Abstract

Photoelectrochemical (PEC) water splitting is one of the most promising hydrogen production methods because of its high efficiency, renewable resources and harmless by-products. Gallium nitride (GaN) is suitable for PEC water splitting because it has excellent stability in electrolyte and band gap energy which straddles the redox potential of water (Vredox = 1.23 V). These characteristics allow this material to split water stably without external bias. However, the stability of GaN is still not sufficient for practical applications. In this study, we investigated the properties of GaN photoelectrodes with aluminum oxide (Al2O3) thin film as a protection layer for increasing stability. In a long-term stability test, Al2O3-coated GaN showed more stable photocurrent than that of bare GaN. The total hydrogen production amount was also improved in Al2O3-coated samples than bare GaN. These results indicate that the Al2O3 protection layer significantly enhances stability and hydrogen production.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting

Mostafa Afifi Hassan, Muhammad Ali Johar, Aadil Waseem, Indrajit V. Bagal, Jun-Seok Ha, and Sang-Wan Ryu
Opt. Express 27(4) A184-A196 (2019)

Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

Rowena Yew, Siva Krishna Karuturi, Jiaqin Liu, Hark Hoe Tan, Yucheng Wu, and Chennupati Jagadish
Opt. Express 27(2) 761-773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
    [Crossref]
  2. S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
    [Crossref]
  3. N. Z. Muradov and T. N. Veziroğlu, ““Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies,” Int. J. Hydrogen Energy 33(23), 6804–6839 (2008).
    [Crossref]
  4. M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002).
    [Crossref]
  5. J. O’M. Bockris, “The origin of ideas on a hydrogen economy and its solution to the decay of the environment,” Int. J. Hydrogen Energy 27(7–8), 731–740 (2002).
    [Crossref]
  6. J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
    [Crossref] [PubMed]
  7. D. Das and T. N. Veziroǧlu, “Hydrogen production by biological processes: a survey of literature,” Int. J. Hydrogen Energy 26(1), 13–28 (2001).
    [Crossref]
  8. T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
    [Crossref] [PubMed]
  9. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
    [Crossref] [PubMed]
  10. N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
    [Crossref]
  11. J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
    [Crossref] [PubMed]
  12. S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
    [Crossref]
  13. Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
    [Crossref]
  14. L. J. Macht, “Extended defects in GaN: selective etching and optical properties,” PhD Thesis, [Sl: sn] (2005).
  15. S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
    [Crossref]
  16. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
    [Crossref] [PubMed]
  17. D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
    [Crossref]
  18. K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
    [Crossref]
  19. M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
    [Crossref]
  20. L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
    [Crossref]
  21. M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
    [Crossref] [PubMed]
  22. M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
    [Crossref]
  23. R. Memming and D. Bahnemann, Semiconductor electrochemistry (John Wiley & Sons, 2015).
  24. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor−liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
    [Crossref]
  25. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
    [Crossref]
  26. M. C. Sellers and E. G. Seebauer, “Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach,” Thin Solid Films 519(7), 2103–2110 (2011).
    [Crossref]
  27. A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
    [Crossref] [PubMed]
  28. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
    [Crossref]
  29. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
    [Crossref]
  30. J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
    [Crossref]
  31. S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
    [Crossref]

2018 (2)

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

2017 (3)

A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
[Crossref] [PubMed]

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

2016 (1)

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

2015 (2)

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

2013 (3)

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

2012 (2)

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

2011 (2)

M. C. Sellers and E. G. Seebauer, “Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach,” Thin Solid Films 519(7), 2103–2110 (2011).
[Crossref]

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

2010 (3)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

2008 (2)

N. Z. Muradov and T. N. Veziroğlu, ““Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies,” Int. J. Hydrogen Energy 33(23), 6804–6839 (2008).
[Crossref]

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

2007 (1)

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

2006 (1)

T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
[Crossref] [PubMed]

2004 (1)

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

2002 (2)

M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002).
[Crossref]

J. O’M. Bockris, “The origin of ideas on a hydrogen economy and its solution to the decay of the environment,” Int. J. Hydrogen Energy 27(7–8), 731–740 (2002).
[Crossref]

2001 (1)

D. Das and T. N. Veziroǧlu, “Hydrogen production by biological processes: a survey of literature,” Int. J. Hydrogen Energy 26(1), 13–28 (2001).
[Crossref]

1996 (2)

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor−liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

1995 (1)

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

AlOtaibi, B.

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Alvi, A. H.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Alvi, N. H.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Araujo, D.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Arent, D. J.

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Aseev, P.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Baik, K. H.

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

Barea, E. M.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Basilio, A. M.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Bisquert, J.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Bockris, J. O’M.

J. O’M. Bockris, “The origin of ideas on a hydrogen economy and its solution to the decay of the environment,” Int. J. Hydrogen Energy 27(7–8), 731–740 (2002).
[Crossref]

Cañas, J.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Chattopadhyay, S.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Chen, H. W.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Chen, H. Y.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Chen, K. H.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Chen, L. C.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Cheng, W. C.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Chien, C. L.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Chou, X.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Cornuz, M.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Das, D.

D. Das and T. N. Veziroǧlu, “Hydrogen production by biological processes: a survey of literature,” Int. J. Hydrogen Energy 26(1), 13–28 (2001).
[Crossref]

Deutsch, T. G.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
[Crossref] [PubMed]

Dinh, H. N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Domen, K.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Ertl, T.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Fan, H. J.

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Fan, S.

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Forman, A. J.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Friedbacher, G.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Fujii, K.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Gaillard, N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Garcia-Belmonte, G.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Garland, R.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Goel, S.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Gómez, V. J.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Grasserbauer, M.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Grätzel, M.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Guo, L.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Gutierrez, M.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Han, J.

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Hassan, W.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

He, J.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Heske, C.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Hirako, A.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Hou, X.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Hsu, G. M.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Hsu, Y. K.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Hung, D.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Hwang, J. S.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Ito, T.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Iwaki, Y.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Jain, S.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Jaramillo, T. F.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Jung, Y.

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

Karuturi, S. K.

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Kesavan, A. V.

A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
[Crossref] [PubMed]

Kibria, M. G.

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Kikitsu, T.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Kim, J.

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

Kindermann, H.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Kleiman-Shwarsctein, A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Kocha, S. S.

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Koike, K.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Kollmann, R.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Koval, C. A.

T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
[Crossref] [PubMed]

Kretschmer, F.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Le Formal, F.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Leskelä, M.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Leung, B.

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Li, C. C.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Li, X.

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Lin, Y. G.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Liu, T. Y.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Lloret, F.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

McFarland, E. W.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Memming, R.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor−liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

Mi, Z.

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Miller, E. L.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Moehl, T.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Momirlan, M.

M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002).
[Crossref]

Mu, J.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Munar, A.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Muradov, N. Z.

N. Z. Muradov and T. N. Veziroğlu, ““Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies,” Int. J. Hydrogen Energy 33(23), 6804–6839 (2008).
[Crossref]

Nakamura, S.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Nakano, Y.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Narodoslawsky, M.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Neugebauer, G.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Nguyen, H. P. T.

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Nötzel, R.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Nouni, M. R.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Nozik, A. J.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor−liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

Ohara, S.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Ohkawa, K.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Ono, M.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Ozasa, K.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Pacios, R.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Pandey, J. K.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Pearton, S. J.

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

Pernot, J.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Peterson, M. W.

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Pham, T.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Piñero, J. C.

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Prohaska, T.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Qian, S.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Ramamurthy, P. C.

A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
[Crossref] [PubMed]

Rao, A. D.

A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
[Crossref] [PubMed]

Redwing, J. M.

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Ren, F.

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

Ritala, M.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Ryu, S. W.

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Saloniemi, H.

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Searson, P. C.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Seebauer, E. G.

M. C. Sellers and E. G. Seebauer, “Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach,” Thin Solid Films 519(7), 2103–2110 (2011).
[Crossref]

Sellers, M. C.

M. C. Sellers and E. G. Seebauer, “Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach,” Thin Solid Films 519(7), 2103–2110 (2011).
[Crossref]

Shen, W.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Shi, S.

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Singh, S.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Sivula, K.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Soto Rodriguez, P. E. D.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Stoeglehner, G.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Sugiyama, M.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Sunkara, M.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Takanabe, K.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Tétreault, N.

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Tischler, M. A.

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Tiwari, A. K.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Tok, A. I. Y.

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Truger, B.

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

Tu, D. H.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Tu, W. H.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Turner, J. A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
[Crossref] [PubMed]

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Ugarte, I.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Venkateswaran, P. S.

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

Veziroglu, T. N.

N. Z. Muradov and T. N. Veziroğlu, ““Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies,” Int. J. Hydrogen Energy 33(23), 6804–6839 (2008).
[Crossref]

M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002).
[Crossref]

D. Das and T. N. Veziroǧlu, “Hydrogen production by biological processes: a survey of literature,” Int. J. Hydrogen Energy 26(1), 13–28 (2001).
[Crossref]

Wang, H. C.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Wang, P. S.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Wang, S. B.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Wang, W.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Willander, M.

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Wu, C. I.

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

Yamamoto, K.

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

Yao, T.

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

Yerino, C.

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Zhang, Y.

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Zhao, S.

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Zhu, L.

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. V. Kesavan, A. D. Rao, and P. C. Ramamurthy, “Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device,” ACS Appl. Mater. Interfaces 9(34), 28774–28784 (2017).
[Crossref] [PubMed]

Adv. Condens. Matter Phys. (1)

S. Shi, S. Qian, X. Hou, J. Mu, J. He, and X. Chou, “Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition,” Adv. Condens. Matter Phys. 2018, 598978 (2018).
[Crossref]

Appl. Phys. Lett. (1)

L. Guo, D. Hung, W. Wang, W. Shen, L. Zhu, C. L. Chien, and P. C. Searson, “Tunnel barrier photoelectrodes for solar water splitting,” Appl. Phys. Lett. 97(6), 063111 (2010).
[Crossref]

Appl. Surf. Sci. (1)

J. Cañas, J. C. Piñero, F. Lloret, M. Gutierrez, T. Pham, J. Pernot, and D. Araujo, “Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS,” Appl. Surf. Sci. 461, 93–97 (2018).
[Crossref]

Chem. Sci. (Camb.) (1)

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci. (Camb.) 2(4), 737–743 (2011).
[Crossref]

Int. J. Hydrogen Energy (5)

N. Z. Muradov and T. N. Veziroğlu, ““Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies,” Int. J. Hydrogen Energy 33(23), 6804–6839 (2008).
[Crossref]

J. O’M. Bockris, “The origin of ideas on a hydrogen economy and its solution to the decay of the environment,” Int. J. Hydrogen Energy 27(7–8), 731–740 (2002).
[Crossref]

D. Das and T. N. Veziroǧlu, “Hydrogen production by biological processes: a survey of literature,” Int. J. Hydrogen Energy 26(1), 13–28 (2001).
[Crossref]

D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, “Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation,” Int. J. Hydrogen Energy 38(34), 14433–14439 (2013).
[Crossref]

K. Koike, K. Yamamoto, S. Ohara, T. Kikitsu, K. Ozasa, S. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes,” Int. J. Hydrogen Energy 42(15), 9493–9499 (2017).
[Crossref]

J. Chem. Phys. (1)

M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708 (2007).
[Crossref] [PubMed]

J. Clean. Prod. (1)

R. Kollmann, G. Neugebauer, F. Kretschmer, B. Truger, H. Kindermann, G. Stoeglehner, T. Ertl, and M. Narodoslawsky, “Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts,” J. Clean. Prod. 155(Part 1), 119–129 (2017).
[Crossref]

J. Electrochem. Soc. (2)

S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical investigation of the gallium nitride‐aqueous electrolyte interface,” J. Electrochem. Soc. 142(12), L238–L240 (1995).
[Crossref]

Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676–H678 (2010).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

J. Mater. Res. (1)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

J. Phys. Chem. (1)

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor−liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
[Crossref]

J. Phys. Chem. B (1)

T. G. Deutsch, C. A. Koval, and J. A. Turner, “III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN,” J. Phys. Chem. B 110(50), 25297–25307 (2006).
[Crossref] [PubMed]

Nano Energy (1)

N. H. Alvi, P. E. D. Soto Rodriguez, P. Aseev, V. J. Gómez, A. H. Alvi, W. Hassan, M. Willander, and R. Nötzel, “InN/InGaN quantum dot photoelectrode: efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Nano Lett. (1)

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Nanoscale (1)

M. Liu, X. Li, S. K. Karuturi, A. I. Y. Tok, and H. J. Fan, “Atomic layer deposition for nanofabrication and interface engineering,” Nanoscale 4(5), 1522–1528 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24(5), 055401 (2013).
[Crossref] [PubMed]

Org. Electron. (1)

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy,” Org. Electron. 9(5), 847–851 (2008).
[Crossref]

Renew. Sustain. Energy Rev. (2)

S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, “Hydrogen: a sustainable fuel for future of the transport sector,” Renew. Sustain. Energy Rev. 51, 623–633 (2015).
[Crossref]

M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy,” Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002).
[Crossref]

Science (1)

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode,” Semicond. Sci. Technol. 27(1), 015014 (2012).
[Crossref]

Thin Solid Films (2)

M. C. Sellers and E. G. Seebauer, “Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach,” Thin Solid Films 519(7), 2103–2110 (2011).
[Crossref]

M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy,” Thin Solid Films 286(1–2), 54–58 (1996).
[Crossref]

Other (2)

R. Memming and D. Bahnemann, Semiconductor electrochemistry (John Wiley & Sons, 2015).

L. J. Macht, “Extended defects in GaN: selective etching and optical properties,” PhD Thesis, [Sl: sn] (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the process for fabricating samples for PEC property measurements (①~⑤) and photograph of the sample (⑥).
Fig. 2
Fig. 2 Cross-sectional TEM images of 1 nm Al2O3 overlayer (a) and 2 nm Al2O3 overlayer (b), EDX profiling data of 1 nm Al2O3 overlayer (c) and 2 nm Al2O3 overlayer (d).
Fig. 3
Fig. 3 Mott–Schottky plot of 1 nm Al2O3/GaN, 2 nm Al2O3/GaN and reference. The equivalent circuit for impedance analysis is indicated.
Fig. 4
Fig. 4 (a) Third cycle of cyclic voltammetry measurement for 1 nm Al2O3/GaN, 2 nm Al2O3/GaN and reference versus Ag/AgCl/NaCl reference electrode. (b) Charge transfer resistance of 1 nm Al2O3/GaN, 2 nm Al2O3/GaN and reference versus the Ag/AgCl/NaCl reference electrode.
Fig. 5
Fig. 5 (a) Staircase linear scan voltammetry of 1 nm Al2O3/GaN, 2 nm Al2O3/GaN and reference versus Pt counter electrode. (b) Time variation in photocurrent density of for 1 nm Al2O3/GaN, 2 nm Al2O3/GaN, and reference at zero bias versus Pt counter electrode. (c) Calculated amounts of hydrogen production from the photocurrents of (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G a N + 6 O H + 3 h + G a O 3 3 + 3 H 2 O + 1 2 N 2 ( g )
1 C sc 2 = 2 k T ε ε 0 e 2 ( e Δ Φ sc k T 1 )
H 2 evolution = 0 t I d t n F

Metrics