Abstract

A core-shell structure, formed in a nanostructured photoanode, is an effective strategy to achieve high solar-to-hydrogen conversion efficiency. In this study, we present a facile and simple synthesis of a unique vertically aligned ZnO/ZnS core-shell heterostructure nanowires (NWs) on a Si substrate. Well-aligned ZnO NWs were grown on Si (100) substrates on a low-temperature ZnO buffer layer by metal-organic chemical vapor deposition. The ZnO NWs were then coated with various thicknesses of ZnS shell layers using atomic layer deposition. The structural characterizations exhibit the well-developed ZnO/ZnS core-shell NWs heterostructure. The as-prepared ZnO/ZnS core-shell NWs was applied as photoanode for photoelectrochemical (PEC) water splitting. This unique ZnO/ZnS core-shell NWs photoanode shows photocurrent density of 1.21 mA cm−2, which is 8.5 times higher than bare ZnO NWs. The PEC performance and the applied-bias-photon-to-current conversion efficiency of ZnO/ZnS core-shell NWs photoanode are further improved with the optimized ZnS shell. The type-II band alignment of the heterostructure photoanode is the key factor for their excellent PEC performance. Importantly, this type of core-shell NWs heterostructure provides useful insights into novel electrode design and fabrication based on earth abundant materials for low-cost solar fuel generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer

Haseong Kim, Hyojung Bae, Seung Wan Bang, Seyoung Kim, Sang Hyun Lee, Sang-Wan Ryu, and Jun-Seok Ha
Opt. Express 27(4) A206-A215 (2019)

Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Photoelectrochemical hydrogen generation with linear gradient Al composition dodecagon faceted AlGaN/n-GaN electrode

W. C. Lai, M. H. Ma, B. K. Lin, B. H. Hsieh, Y. R. Wu, and J. K. Sheu
Opt. Express 22(S7) A1853-A1861 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Holdren, “Energy and Sustainability,” Science 315(5813), 737 (2007).
    [Crossref] [PubMed]
  2. J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
    [Crossref] [PubMed]
  3. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
    [Crossref] [PubMed]
  4. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
    [Crossref]
  5. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
    [Crossref]
  6. P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
    [Crossref]
  7. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
    [Crossref] [PubMed]
  8. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
    [Crossref] [PubMed]
  9. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
    [Crossref]
  10. E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
    [Crossref]
  11. S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
    [Crossref] [PubMed]
  12. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
    [Crossref] [PubMed]
  13. M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
    [Crossref] [PubMed]
  14. M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
    [Crossref]
  15. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  16. D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
    [Crossref] [PubMed]
  17. Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
    [Crossref] [PubMed]
  18. Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
    [Crossref] [PubMed]
  19. S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
    [Crossref]
  20. M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
    [Crossref]
  21. Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
    [Crossref]
  22. P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
    [Crossref]
  23. V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
    [Crossref]
  24. A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
    [Crossref]
  25. A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting,” Int. J. Hydrogen Energy 32(14), 2673–2678 (2007).
    [Crossref]
  26. X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
    [Crossref] [PubMed]
  27. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
    [Crossref] [PubMed]
  28. Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
    [Crossref] [PubMed]
  29. Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
    [Crossref] [PubMed]
  30. Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
    [Crossref] [PubMed]
  31. C. Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007).
    [Crossref] [PubMed]
  32. Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep. 64(3-4), 33–71 (2009).
    [Crossref]
  33. Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
    [Crossref] [PubMed]
  34. K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
    [Crossref]
  35. M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
    [Crossref] [PubMed]
  36. S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
    [Crossref] [PubMed]
  37. K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
    [Crossref] [PubMed]
  38. S. Panigrahi and D. Basak, “Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,” Nanoscale 3(5), 2336–2341 (2011).
    [Crossref] [PubMed]
  39. S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
    [Crossref]
  40. S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
    [Crossref] [PubMed]
  41. W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
    [Crossref] [PubMed]
  42. K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
    [Crossref]
  43. L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
    [Crossref]
  44. K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
    [Crossref]
  45. M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
    [Crossref]
  46. M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010).
    [Crossref] [PubMed]
  47. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
    [Crossref]
  48. J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
    [Crossref]
  49. H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
    [Crossref]
  50. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
    [Crossref]
  51. Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
    [Crossref]
  52. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
    [Crossref]
  53. B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
    [Crossref]
  54. S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
    [Crossref]
  55. M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
    [Crossref]
  56. S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
    [Crossref]

2018 (6)

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

2017 (2)

P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
[Crossref]

A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
[Crossref]

2016 (3)

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

2015 (6)

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

2013 (8)

M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
[Crossref]

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

2012 (5)

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

2011 (6)

M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
[Crossref]

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

S. Panigrahi and D. Basak, “Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,” Nanoscale 3(5), 2336–2341 (2011).
[Crossref] [PubMed]

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

2010 (2)

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010).
[Crossref] [PubMed]

2009 (2)

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep. 64(3-4), 33–71 (2009).
[Crossref]

2008 (3)

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

2007 (3)

J. P. Holdren, “Energy and Sustainability,” Science 315(5813), 737 (2007).
[Crossref] [PubMed]

A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting,” Int. J. Hydrogen Energy 32(14), 2673–2678 (2007).
[Crossref]

C. Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

2006 (1)

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

2003 (1)

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

2002 (2)

B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
[Crossref]

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

2001 (1)

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Ahn, K.-S.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Alim, K. A.

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Al-Jassim, M.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Atwater, H. A.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

Bak, T.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Balandin, A. A.

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Bando, Y.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Basak, D.

S. Panigrahi and D. Basak, “Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,” Nanoscale 3(5), 2336–2341 (2011).
[Crossref] [PubMed]

Bhatt, M.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

Bu, Y.

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

Cai, G.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Cai, L.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Cai, W.-B.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Castillo, R. B.

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

Cauda, V.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Chan, Y. F.

B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
[Crossref]

Chen, C.-Y.

Chen, I.-C.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Chen, J.

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Chen, J. J.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Chen, M.-W.

Chen, Y. L.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Chen, Y. W.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Chen, Z.

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

Cheng, C.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Cheng, H.-M.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Chidsey, C. E. D.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Chiodoni, A.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Cho, S.

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

Claverie, J. P.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Crespilho, F. N.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Da, P.

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Datta, M. K.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

de Carvalho, V. A. N.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

de Leon Snapp, N.

M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
[Crossref]

Deshmukh, P. R.

P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
[Crossref]

Deutsch, T.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Ding, Y.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010).
[Crossref] [PubMed]

Dong, C.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Dong, Y.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

Du, Y.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Dühnen, S.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Everitt, H. O.

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Fan, C.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Fan, H. J.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Fan, Z.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Fang, W.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Farías Rivera, V.

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Feng, S. Q.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Fitzmorris, R. C.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Fonoberov, V. A.

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Gattu, B.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Golberg, D.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Grätzel, M.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Gray, H. B.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

Gu, X.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Gunji, M.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Guo, L.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Guo, Z.-X.

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Ha, J.-S.

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

Hanumantha, P. J.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Hassan, M. A.

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

He, B.

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

He, J.-H.

Hernández, S.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Hidalgo, D.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Holdren, J. P.

J. P. Holdren, “Energy and Sustainability,” Science 315(5813), 737 (2007).
[Crossref] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hong, W.-K.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Hou, B.

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

Hu, Y.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Hua, B.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Huang, C.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Huang, C.-J.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Huang, Q.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Huang, W.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Huang, Y.

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Jang, J.-W.

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

Jeong, S.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Jiang, C. S.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Jiang, K.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Jie, X.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Jin, H.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Jin, X.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Jo, Y.-R.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Johar, M. A.

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

Jones, K.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Kang, J.-H.

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

Karuturi, S. K.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Kim, B.-J.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Kim, M. W.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Klingshirn, C.

C. Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

Koide, Y.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Kong, Y. C.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Kudo, A.

A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting,” Int. J. Hydrogen Energy 32(14), 2673–2678 (2007).
[Crossref]

Kumta, P. N.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Lamberti, A.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

Laporte, V.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Lee, J. S.

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

Lee, K.-H.

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

Lee, S.

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

Leem, Y.-C.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Leite, E. R.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Leung, S.-F.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Lewis, N. S.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

Li, J.

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Li, S.-L.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Li, T.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Li, W.

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

Li, Y.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Li, Z.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Liao, M.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Lien, D.-H.

Lima, B. H.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Lin, I.-N.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Lin, Q.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Lin, Y.

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

Lin, Z.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Lin, Z.-H.

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

Ling, Y.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Liu, D.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Liu, H.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Liu, J.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Liu, K.-S.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Liu, L.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Liu, M.

M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
[Crossref]

Liu, P.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Liu, R.-S.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Liu, Y.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Lou, X. W. D.

M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
[Crossref]

Luo, B.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Luo, J.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Luz, R. A. S.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Mai, W.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Manfredi, D.

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Manivannan, A.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Marcus, K.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Marmon, J. K.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

Martin, D. J.

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Mascarenhas, A.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

McIntyre, P. C.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

McKone, J. R.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

Misra, M.

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

Mohanty, S. K.

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

Moniz, S. J. A.

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Morales-Guzman, P. I.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Nayak, A. K.

A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
[Crossref]

Nie, Y.

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

Nowotny, J.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Pan, K.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

Pan, Q.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

Panigrahi, S.

S. Panigrahi and D. Basak, “Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,” Nanoscale 3(5), 2336–2341 (2011).
[Crossref] [PubMed]

Paracchino, A.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Park, H.

M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
[Crossref]

Park, S.-J.

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Park, Y.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Patel, P. P.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Patil, D. R.

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

Patil, S. S.

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

Peng, C.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Peng, H.

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Pern, J.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Pirri, F. C.

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

Poston, J. A.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Pradhan, D.

A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
[Crossref]

Prange, J. D.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Qi, X.

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Qiang, P.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Qiang, Y.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Qin, L.

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Qiu, Y.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Rai, S. C.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

Rajendra Kumar, R. T.

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

Ranjith, K. S.

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

Razzari, L.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Rekas, M.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Ren, F.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Ryu, S.-W.

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

Sacco, A.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

Saracco, G.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

Sarma, B.

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

Sheehan, S. W.

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

Shen, S.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Shet, S.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Shevlin, S. A.

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Shin, W. G.

P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
[Crossref]

Sillanpaa, M.

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

Sivula, K.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Smith, Y. R.

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

Sohn, Y.

P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
[Crossref]

A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
[Crossref]

Song, J.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Sorrell, C. C.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Souza, F. L.

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Su, L. T.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Su, S.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Sun, L. X.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Sun, X.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Tan, X.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Tang, J.

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Tang, Y.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Tarr, J.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Thimsen, E.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Tian, G.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

Tian, W.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Tok, A. I. Y.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Tresso, E.

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

Tsai, D. P.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Tseng, Y.-K.

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Tsui, K.-H.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Turner, J.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Velikokhatnyi, O. I.

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Wang, C.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Wang, D.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

Wang, G.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Wang, H.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Wang, H. B.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Wang, J.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Wang, K.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Wang, L.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Wang, M.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Wang, N.

B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
[Crossref]

Wang, Q.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Wang, X.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Wang, Z. L.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep. 64(3-4), 33–71 (2009).
[Crossref]

Warren, E. L.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

Wei, W.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Wei, Z.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Wong, C. P.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Wu, H.

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Wu, W.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Xiao, X.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Xie, T.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

Xie, Y.

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
[Crossref]

Xing, L.

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

Xiu, F.

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Xu, F.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Xu, M.

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Xue, C.

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Xue, X.

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

Yan, Y.

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Yan, Y. F.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Yang, P.

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Yang, S.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Yang, X.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Yang, Y.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

Yang, Z.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Yao, B. D.

B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
[Crossref]

Yin, Z.

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Yu, D. P.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Yu, S. Y.

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

Yu, X.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Yuan, L.

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

Zeng, Z. M.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Zhai, T.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Zhang, B.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Zhang, C.

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

Zhang, H.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

Zhang, J. Z.

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

Zhang, Q.

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

Zhang, X.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Zhang, Y.

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Zhao, D.

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Zhao, Y.

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Zheng, G.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Zhou, J.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Zhou, L.

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

Zhou, M.

M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
[Crossref]

Zhou, S.

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

Zhou, T.

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

Zhou, W.

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

Zhou, W. L.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Zhu, G.

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

Y. Bu, Z. Chen, W. Li, and B. Hou, “Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material,” ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013).
[Crossref] [PubMed]

K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, and G. Wang, “Facile fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting,” ACS Appl. Mater. Interfaces 5(17), 8314–8320 (2013).
[Crossref] [PubMed]

ACS Nano (4)

P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, “Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano 7(3), 2617–2626 (2013).
[Crossref] [PubMed]

Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, “Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies,” ACS Nano 7(1), 785–790 (2013).
[Crossref] [PubMed]

J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, “Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting,” ACS Nano 10(4), 4496–4503 (2016).
[Crossref] [PubMed]

S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array,” ACS Nano 9(6), 6419–6427 (2015).
[Crossref] [PubMed]

ACS Sustain. Chem.& Eng. (1)

M. A. Hassan, M. A. Johar, S. Y. Yu, and S.-W. Ryu, “Facile synthesis of well-aligned ZnO nanowires on various substrates by MOCVD for enhanced photoelectrochemical water-splitting performance,” ACS Sustain. Chem.& Eng. 6(12), 16047–16054 (2018).
[Crossref]

Acta Mater. (1)

M. A. Hassan, J.-H. Kang, M. A. Johar, J.-S. Ha, and S.-W. Ryu, “High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications,” Acta Mater. 146, 171–175 (2018).
[Crossref]

Adv. Funct. Mater. (1)

Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, I.-N. Lin, K.-S. Liu, and I.-C. Chen, “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films,” Adv. Funct. Mater. 13(10), 811–814 (2003).
[Crossref]

Adv. Mater. (4)

K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, “Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core-shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[Crossref]

W. Tian, C. Zhang, T. Zhai, S.-L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, and Y. Bando, “Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms,” Adv. Mater. 26(19), 3088–3093 (2014).
[Crossref] [PubMed]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Z. Yin, Z. Wang, Y. Du, X. Qi, Y. Huang, C. Xue, and H. Zhang, “Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting,” Adv. Mater. 24(39), 5374–5378 (2012).
[Crossref] [PubMed]

Adv. Sci. (Weinh.) (2)

D. Wang, Y. Zhang, C. Peng, J. Wang, Q. Huang, S. Su, L. Wang, W. Huang, and C. Fan, “Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting,” Adv. Sci. (Weinh.) 2(4), 1500005 (2015).
[Crossref] [PubMed]

Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai, and G. Zheng, “Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst,” Adv. Sci. (Weinh.) 2(4), 1500003 (2015).
[Crossref] [PubMed]

APL Mater. (1)

S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, “Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes,” APL Mater. 2(1), 010703 (2014).
[Crossref]

Appl. Catal. B (2)

K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. Rajendra Kumar, “Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Appl. Catal. B 237, 128–139 (2018).
[Crossref]

S. S. Patil, M. A. Johar, M. A. Hassan, D. R. Patil, and S.-W. Ryu, “Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation,” Appl. Catal. B 237, 791–801 (2018).
[Crossref]

Appl. Phys. Lett. (4)

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core-shell nanowire arrays,” Appl. Phys. Lett. 96(12), 123105 (2010).
[Crossref]

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett. 81(4), 757–759 (2002).
[Crossref]

K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, and M. Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells,” Appl. Phys. Lett. 93(16), 163117 (2008).
[Crossref]

Chem. Sci. (Camb.) (1)

M. Liu, N. de Leon Snapp, and H. Park, “Water photolysis with a cross-linked titanium dioxidenanowire anode,” Chem. Sci. (Camb.) 2(1), 80–87 (2011).
[Crossref]

ChemPhysChem (1)

C. Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

Cryst. Growth Des. (1)

A. K. Nayak, Y. Sohn, and D. Pradhan, “Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance,” Cryst. Growth Des. 17(9), 4949–4957 (2017).
[Crossref]

Energy Environ. Sci. (3)

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, “MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution,” Energy Environ. Sci. 11(1), 106–114 (2018).
[Crossref]

S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, “Visible-light driven heterojunction photocatalysts for water splitting – a critical review,” Energy Environ. Sci. 8(3), 731–759 (2015).
[Crossref]

Int. J. Hydrogen Energy (3)

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting,” Int. J. Hydrogen Energy 32(14), 2673–2678 (2007).
[Crossref]

Y. R. Smith, B. Sarma, S. K. Mohanty, and M. Misra, “Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting,” Int. J. Hydrogen Energy 38(5), 2062–2069 (2013).
[Crossref]

J. Alloys Compd. (2)

P. R. Deshmukh, Y. Sohn, and W. G. Shin, “Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting applications,” J. Alloys Compd. 711, 573–580 (2017).
[Crossref]

S. Hernández, V. Cauda, D. Hidalgo, V. Farías Rivera, D. Manfredi, A. Chiodoni, and F. C. Pirri, “Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting,” J. Alloys Compd. 615, S530–S537 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Lin, S. Zhou, S. W. Sheehan, and D. Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting,” J. Am. Chem. Soc. 133(8), 2398–2401 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-Controlled Vapor−Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C 113(10), 3950–3954 (2009).
[Crossref]

J. Phys. Conf. Ser. (1)

H. B. Wang, Q. Wang, C. Dong, L. Yuan, F. Xu, and L. X. Sun, “Composition design for Laves phase-related BCC-V solid solution alloys with large hydrogen storage capacities,” J. Phys. Conf. Ser. 98(1), 012018 (2008).
[Crossref]

J. Power Sources (1)

V. A. N. de Carvalho, R. A. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, “Highly oriented hematite nanorods arrays for photoelectrochemical water splitting,” J. Power Sources 205, 525–529 (2012).
[Crossref]

Mater. Sci. Eng. B (1)

P. P. Patel, P. J. Hanumantha, O. I. Velikokhatnyi, M. K. Datta, B. Gattu, J. A. Poston, A. Manivannan, and P. N. Kumta, “Vertically aligned nitrogen doped (Sn,Nb)O2 nanotubes – Robust photoanodes for hydrogen generation by photoelectrochemical water splitting,” Mater. Sci. Eng. B 208, 1–14 (2016).
[Crossref]

Mater. Sci. Eng. Rep. (1)

Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep. 64(3-4), 33–71 (2009).
[Crossref]

Nano Energy (1)

S. Jeong, M. W. Kim, Y.-R. Jo, Y.-C. Leem, W.-K. Hong, B.-J. Kim, and S.-J. Park, “High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core-shell nanowires by the piezotronic and piezo-phototronic effect,” Nano Energy 30, 208–216 (2016).
[Crossref]

Nano Lett. (3)

G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Lett. 11(7), 3026–3033 (2011).
[Crossref] [PubMed]

M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, “Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion,” Nano Lett. 12(3), 1503–1508 (2012).
[Crossref] [PubMed]

Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Nano Today (1)

M. Zhou, X. W. D. Lou, and Y. Xie, “Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities,” Nano Today 8(6), 598–618 (2013).
[Crossref]

Nanoscale (1)

S. Panigrahi and D. Basak, “Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection,” Nanoscale 3(5), 2336–2341 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z. L. Wang, “Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor,” Nanotechnology 24(22), 225501 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction,” Nat. Mater. 10(6), 456–461 (2011).
[Crossref] [PubMed]

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, and G. Saracco, “Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting,” Phys. Chem. Chem. Phys. 17(12), 7775–7786 (2015).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B Condens. Matter Mater. Phys. 73(16), 165317 (2006).
[Crossref]

Rep. Prog. Phys. (1)

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref] [PubMed]

Science (1)

J. P. Holdren, “Energy and Sustainability,” Science 315(5813), 737 (2007).
[Crossref] [PubMed]

Vacuum (1)

L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang, and J. Song, “Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO,” Vacuum 148, 201–205 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the fabrication process of ZnO/ZnS core-shell NW heterostructures with the photogenerated electron–hole transfer process.
Fig. 2
Fig. 2 Cross-sectional SEM images of (a) Bare ZnO NWs (b) ZnO/ZnS core-shell NWs with 30-nm-thick ZnS shell. The scale bars represent 1 μm. The insets show high magnification images.
Fig. 3
Fig. 3 (a) Low-magnification and (b) high-resolution TEM images of the bare ZnO NWs with clear and well-resolved lattice fringes. (c-e) TEM images with different magnifications of ZnO/ZnS core-shell NWs with 30-nm-thick ZnS shell, showing the interface region of the core-shell heterostructure. (f) High-resolution TEM image of the ZnS shell.
Fig. 4
Fig. 4 (a) Bright-field TEM image of ZnO/ZnS core-shell NWs (b-e) Elemental mappings over a single ZnO/ZnS core-shell NW: (c) is for Zn, (d) is for S, (e) is for O, and (b) is a composite image of Zn, S, and O. (f) EDS spectrum of ZnO/ZnS core-shell NWs and the calculation of atomic compositions. Scale bars represent 100 nm for all images.
Fig. 5
Fig. 5 (a) XRD patterns and (b) Room temperature PL spectra of bare ZnO NWs and ZnO/ZnS core-shell NWs with different thicknesses of ZnS shell.
Fig. 6
Fig. 6 PEC performance of ZnO/ZnS core-shell NWs as compared to bare ZnO NWs: (a) LSV curves in 0.5 M Na2SO4 electrolyte, (b) applied-bias-photon-to-current conversion efficiency, and (c) Nyquist plots. The inset shows the enlarged view of ZnO/ZnS core-shell NWs with 20-nm-thick ZnS shell.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ABPE( % )= [ J( mA/c m 2 )×( 1.23 V app ) ] P light ( mW/c m 2 ) ×100

Metrics