Abstract

We present a polymer-assisted spin coating process used to fabricate high-density p-type CuBi2O4 (CBO) thin films. Polyvinylpyrrolidone (PVP) is introduced in the precursor solutions in order to promote uniform nucleation of CBO and prevent formation of the secondary phase, such as Bi2O3, by Bi3+ ion hydrolysis. Slow PVP molecule decomposition during the two-step annealing process, with a 1 M/0.5 M (Bi3+/Cu2+) metal ion concentration, enables optimum contact at the CBO/substrate interface by avoiding formation of voids. This resulted in the formation of non-porous, compact CBO thin films. The highest current density of the photoelectrochemical (PEC) oxygen reduction reaction is obtained with non-porous, compact CBO thin films due to unimpeded charge transport through the CBO bulk, as well as across the interface. When combined with silicon, the high-density CBO thin film investigated in this work is expected to provide new PEC tandem cell options to use for solar applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction

Abeer Alarawi, Vinoth Ramalingam, Hui-Chun Fu, Purushothaman Varadhan, Rusen Yang, and Jr-Hau He
Opt. Express 27(8) A352-A363 (2019)

Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions

Huafan Zhang, Mohamed Ebaid, Jeremy Tan, Guangyu Liu, Jung-Wook Min, Tien Khee Ng, and Boon S. Ooi
Opt. Express 27(4) A81-A91 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
    [Crossref] [PubMed]
  2. S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
    [Crossref]
  3. M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
    [Crossref]
  4. Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
    [Crossref] [PubMed]
  5. U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
    [Crossref]
  6. K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
    [Crossref] [PubMed]
  7. J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
    [Crossref] [PubMed]
  8. K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
    [Crossref]
  9. D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
    [Crossref]
  10. Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
    [Crossref]
  11. N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
    [Crossref]
  12. D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
    [Crossref]
  13. G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
    [Crossref]
  14. H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
    [Crossref] [PubMed]
  15. J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
    [Crossref]
  16. N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
    [Crossref]
  17. N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
    [Crossref]
  18. Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
    [Crossref]
  19. F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
    [Crossref]
  20. S. Oh and J. Oh, “High performance and stability of micropatterned oxide-passivated photoanodes with local catalysts for photoelectrochemical water splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
    [Crossref]
  21. S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
    [Crossref] [PubMed]
  22. S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
    [Crossref]
  23. J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
    [Crossref]
  24. Y. H. Rho and K. Kanamura, “Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method,” J. Solid State Chem. 177(6), 2094–2100 (2004).
    [Crossref]
  25. H. Kozuka and M. Kajimura, “Single-step dip coating of crack-free BaTiO3 films >1 μm thick: effect of poly(vinylpyrrolidone) on critical thickness,” J. Am. Ceram. Soc. 83(5), 1056–1062 (2000).
    [Crossref]
  26. H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
    [Crossref]
  27. S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
    [Crossref]
  28. H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
    [Crossref]
  29. K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
    [Crossref]
  30. P. Qiu and C. Mao, “Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles,” Adv. Mater. 23(42), 4880–4885 (2011).
    [Crossref] [PubMed]
  31. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
    [Crossref]
  32. M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
    [Crossref]
  33. M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
    [Crossref]
  34. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
    [Crossref]
  35. A. Yamano and H. Kozuka, “Effects of the heat-treatment conditions on the crystallographic orientation of Pb(Zr,Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method,” J. Am. Ceram. Soc. 90(12), 3882–3889 (2007).
  36. Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
    [Crossref]
  37. Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
    [Crossref]
  38. Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
    [Crossref] [PubMed]
  39. S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
    [Crossref] [PubMed]
  40. F. F. Abdi and R. Van De Krol, “Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes,” J. Phys. Chem. C 116(17), 9398–9404 (2012).
    [Crossref]
  41. U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
    [Crossref]

2018 (4)

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

2017 (6)

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

2016 (9)

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
[Crossref] [PubMed]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

S. Oh and J. Oh, “High performance and stability of micropatterned oxide-passivated photoanodes with local catalysts for photoelectrochemical water splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

2015 (4)

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

2014 (2)

Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
[Crossref]

H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
[Crossref] [PubMed]

2013 (1)

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

2012 (3)

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

F. F. Abdi and R. Van De Krol, “Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes,” J. Phys. Chem. C 116(17), 9398–9404 (2012).
[Crossref]

2011 (3)

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

P. Qiu and C. Mao, “Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles,” Adv. Mater. 23(42), 4880–4885 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

2007 (1)

A. Yamano and H. Kozuka, “Effects of the heat-treatment conditions on the crystallographic orientation of Pb(Zr,Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method,” J. Am. Ceram. Soc. 90(12), 3882–3889 (2007).

2006 (2)

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

2004 (2)

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

Y. H. Rho and K. Kanamura, “Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method,” J. Solid State Chem. 177(6), 2094–2100 (2004).
[Crossref]

2003 (1)

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

2000 (2)

H. Kozuka and M. Kajimura, “Single-step dip coating of crack-free BaTiO3 films >1 μm thick: effect of poly(vinylpyrrolidone) on critical thickness,” J. Am. Ceram. Soc. 83(5), 1056–1062 (2000).
[Crossref]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

Abdel-Wahab, A.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Abdi, F. F.

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

F. F. Abdi and R. Van De Krol, “Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes,” J. Phys. Chem. C 116(17), 9398–9404 (2012).
[Crossref]

An, J.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Atwater, H. A.

K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
[Crossref] [PubMed]

Balachandran, U.

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Berglund, S. P.

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

Bogdanoff, P.

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

Borodko, Y.

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Buddhudu, S.

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

Cao, D.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Cao, X.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Cardiel, A. C.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Cha, H. G.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Chao, S.

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Chemseddine, A.

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

Chen, R.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Chen, Z.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Cheng, Y.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Cho, K.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Cho, M.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Cho, S.-P.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Choi, K. S.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Choi, K.-S.

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

Choi, S. H.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Choi, S. K.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Choi, W.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Choi, Y.

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

Chu, D.

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

Chung, S.-Y.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Deutsch, T. G.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Dinh, H. N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Domen, K.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Du, C.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Du, Y. K.

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Fan, X.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Forman, A. J.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Fountaine, K. T.

K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
[Crossref] [PubMed]

Frei, H.

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Friedrich, D.

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

Gaillard, N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Gandha, K. H.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Gao, L.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Garland, R.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Grätzel, M.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Griep, M.

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

Habas, S. E.

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Hahn, N. T.

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

Ham, D. J.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Hamatani, T.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

Han, D. S.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Han, S.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Heske, C.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Higashi, Y.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

Hill, J. C.

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

Hirano, T.

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

Holmberg, V. C.

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

Hong, B. H.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Hossain, M. K.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Hu, H.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

Hu, Y.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Hua, N. P.

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Huda, M. N.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Janáky, C.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Jang, J.-W.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Jang, Y. J.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Jaramillo, T. F.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Jerng, S. E.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Ji, S. M.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Jia, Q.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Jiang, L.

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Jin, J.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

Kajimura, M.

H. Kozuka and M. Kajimura, “Single-step dip coating of crack-free BaTiO3 films >1 μm thick: effect of poly(vinylpyrrolidone) on critical thickness,” J. Am. Ceram. Soc. 83(5), 1056–1062 (2000).
[Crossref]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

Kalpana, D.

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

Kanagesan, S.

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

Kanamura, K.

Y. H. Rho and K. Kanamura, “Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method,” J. Solid State Chem. 177(6), 2094–2100 (2004).
[Crossref]

Kang, D.

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kang, J. H.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Kang, U.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Karthikeyan, K.

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

Katayama, K.

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

Kim, J.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Kim, J. B.

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

Kim, J. H.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Kim, J. Y.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Kim, J.-G.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Kim, S.-H.

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

Kim, T. W.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kim, W. Y.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Kleiman-Shwarsctein, A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Koebel, M.

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Korgel, B. A.

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

Kozuka, H.

A. Yamano and H. Kozuka, “Effects of the heat-treatment conditions on the crystallographic orientation of Pb(Zr,Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method,” J. Am. Ceram. Soc. 90(12), 3882–3889 (2007).

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

H. Kozuka and M. Kajimura, “Single-step dip coating of crack-free BaTiO3 films >1 μm thick: effect of poly(vinylpyrrolidone) on critical thickness,” J. Am. Ceram. Soc. 83(5), 1056–1062 (2000).
[Crossref]

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

Kuang, Y.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Kubota, S. R.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kudo, A.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Kumar, K. N.

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

Lee, C.-Y.

H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
[Crossref] [PubMed]

Lee, Y. S.

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

Lei, Y.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Lewerenz, H. J.

K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
[Crossref] [PubMed]

Li, F.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Li, J.

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

Li, P.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Liu, J. P.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Liu, S.

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Liu, Y.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Long, X.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

Luo, J.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Ma, B.

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Ma, H.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Ma, J.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Ma, M.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Mao, C.

P. Qiu and C. Mao, “Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles,” Adv. Mater. 23(42), 4880–4885 (2011).
[Crossref] [PubMed]

Mayer, M. T.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

McFarland, E. W.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Mi, Y.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Miller, E. L.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Moon, J.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Mou, Z. G.

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Mullins, C. B.

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

Nail, B. A.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Nakabayashi, Y.

Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
[Crossref]

Nam, K. T.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Narayanan, M.

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Naresh, V.

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

Nasori, N.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Nishikawa, M.

Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
[Crossref]

Nishiyama, H.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Nithiyanantham, S.

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

Nosaka, Y.

Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
[Crossref]

Oh, J.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

S. Oh and J. Oh, “High performance and stability of micropatterned oxide-passivated photoanodes with local catalysts for photoelectrochemical water splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

Oh, S.

S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

S. Oh and J. Oh, “High performance and stability of micropatterned oxide-passivated photoanodes with local catalysts for photoelectrochemical water splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

Okubayashi, M.

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

Osterloh, F. E.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Park, H.

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

Park, H. S.

H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
[Crossref] [PubMed]

Park, J. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Park, Y.

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

Qiu, P.

P. Qiu and C. Mao, “Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles,” Adv. Mater. 23(42), 4880–4885 (2011).
[Crossref] [PubMed]

Qu, S.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Rajeshwar, K.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Reisner, E.

H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
[Crossref] [PubMed]

Rho, Y. H.

Y. H. Rho and K. Kanamura, “Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method,” J. Solid State Chem. 177(6), 2094–2100 (2004).
[Crossref]

Ryoo, H.

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Samu, G. F.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Santhanagopalan, S.

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

Sarker, P.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Schreier, M.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Selvan, R. K.

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

Shan, B.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Sharma, G.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Sim, U.

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Sivaiah, K.

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

Sivakumar, M.

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

Somorjai, G. A.

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Son, M.-K.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Song, H.

S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

Song, J. T.

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Steier, L.

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

Sung Lee, J.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Sunkara, M.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Suresh Babu, R.

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

Takanabe, K.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Takenaka, S.

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

Tokita, H.

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

Turner, J. A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Umapathy, V.

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

van de Krol, R.

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

F. F. Abdi and R. Van De Krol, “Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes,” J. Phys. Chem. C 116(17), 9398–9404 (2012).
[Crossref]

Wang, C.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Wang, D. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Wang, F.

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

Wang, J.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Wang, Y.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Wang, Z.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Wen, L.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Wen, Y.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Xu, N.

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Yamada, T.

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

Yamano, A.

A. Yamano and H. Kozuka, “Effects of the heat-treatment conditions on the crystallographic orientation of Pb(Zr,Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method,” J. Am. Ceram. Soc. 90(12), 3882–3889 (2007).

Yang, J.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Yang, P.

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

Yang, Y.

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

Youn, D. H.

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Yuvaraj, S.

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Zhang, Z.

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

Zhao, Z.

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

Zhu, L.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Zou, B.

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

ACS Sustain. Chem.& Eng. (1)

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “N,Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting,” ACS Sustain. Chem.& Eng. 6(6), 7257–7264 (2018).
[Crossref]

Adv. Energy Mater. (3)

Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, “A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting,” Adv. Energy Mater. 6(2), 1501645 (2016).
[Crossref]

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, and J. Oh, “Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction,” Adv. Energy Mater. 7(3), 1601103 (2017).
[Crossref]

Adv. Mater. (1)

P. Qiu and C. Mao, “Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles,” Adv. Mater. 23(42), 4880–4885 (2011).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

J. Li, M. Griep, Y. Choi, and D. Chu, “Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode,” Chem. Commun. (Camb.) 54(27), 3331–3334 (2018).
[Crossref] [PubMed]

Chem. Mater. (2)

D. Kang, J. C. Hill, Y. Park, and K.-S. Choi, “Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes,” Chem. Mater. 28(12), 4331–4340 (2016).
[Crossref]

S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, and R. van de Krol, “Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting,” Chem. Mater. 28(12), 4231–4242 (2016).
[Crossref]

Chem. Rev. (1)

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

CrystEngComm (1)

Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma, and X. Cao, “Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties,” CrystEngComm 13(7), 2268–2272 (2011).
[Crossref]

Electrochim. Acta (1)

Y. Nakabayashi, M. Nishikawa, and Y. Nosaka, “Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production,” Electrochim. Acta 125(3), 191–198 (2014).
[Crossref]

Energy Environ. Sci. (3)

M.-K. Son, L. Steier, M. Schreier, M. T. Mayer, J. Luo, and M. Grätzel, “A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes,” Energy Environ. Sci. 10(4), 912–918 (2017).
[Crossref]

U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-Wahab, and H. Park, “Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis,” Energy Environ. Sci. 8(9), 2638–2643 (2015).
[Crossref]

U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong, and K. T. Nam, “N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production,” Energy Environ. Sci. 8(4), 1329–1338 (2015).
[Crossref]

Int. J. Hydrogen Energy (2)

J. Yang, C. Du, Y. Wen, Z. Zhang, K. Cho, R. Chen, and B. Shan, “Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination,” Int. J. Hydrogen Energy 43(20), 9549–9557 (2018).
[Crossref]

N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, and J. Jin, “Polythiophene coated CuBi2O4 networks: A porous inorganic–organic hybrid heterostructure for enhanced photoelectrochemical hydrogen evolution,” Int. J. Hydrogen Energy 43(4), 2064–2072 (2018).
[Crossref]

J. Am. Ceram. Soc. (2)

H. Kozuka and M. Kajimura, “Single-step dip coating of crack-free BaTiO3 films >1 μm thick: effect of poly(vinylpyrrolidone) on critical thickness,” J. Am. Ceram. Soc. 83(5), 1056–1062 (2000).
[Crossref]

A. Yamano and H. Kozuka, “Effects of the heat-treatment conditions on the crystallographic orientation of Pb(Zr,Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method,” J. Am. Ceram. Soc. 90(12), 3882–3889 (2007).

J. Appl. Polym. Sci. (1)

Y. K. Du, P. Yang, Z. G. Mou, N. P. Hua, and L. Jiang, “Thermal decomposition behaviors of PVP coated on platinum nanoparticles,” J. Appl. Polym. Sci. 99(1), 23–26 (2006).
[Crossref]

J. Colloid Interface Sci. (1)

S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y. S. Lee, and R. K. Selvan, “Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors,” J. Colloid Interface Sci. 469(1), 47–56 (2016).
[Crossref] [PubMed]

J. Eur. Ceram. Soc. (1)

H. Kozuka, S. Takenaka, H. Tokita, and M. Okubayashi, “PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness,” J. Eur. Ceram. Soc. 24(6), 1585–1588 (2004).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (4)

S. Oh, J. B. Kim, J. T. Song, J. Oh, and S.-H. Kim, “Atomic layer deposited molybdenum disulfide on Si photocathodes for highly efficient photoelectrochemical water reduction reaction,” J. Mater. Chem. A Mater. Energy Sustain. 5(7), 3304–3310 (2017).
[Crossref]

D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, and Y. Lei, “p-Type CuBi2O4: An easily accessible photocathodic material for high-efficiency water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 4(23), 8995–9001 (2016).
[Crossref]

G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda, and F. E. Osterloh, “Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2936–2942 (2016).
[Crossref]

F. Wang, A. Chemseddine, F. F. Abdi, R. van de Krol, and S. P. Berglund, “Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12838–12847 (2017).
[Crossref]

J. Mater. Res. (1)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

J. Phys. Chem. B (1)

Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, “Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR,” J. Phys. Chem. B 110(46), 23052–23059 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (4)

M. K. Hossain, G. F. Samu, K. H. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky, and K. Rajeshwar, “Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and α-Bi2O3,” J. Phys. Chem. C 121(15), 8252–8261 (2017).
[Crossref]

S. Oh and J. Oh, “High performance and stability of micropatterned oxide-passivated photoanodes with local catalysts for photoelectrochemical water splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

N. T. Hahn, V. C. Holmberg, B. A. Korgel, and C. B. Mullins, “Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes,” J. Phys. Chem. C 116(10), 6459–6466 (2012).
[Crossref]

F. F. Abdi and R. Van De Krol, “Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes,” J. Phys. Chem. C 116(17), 9398–9404 (2012).
[Crossref]

J. Sol-Gel Sci. Technol. (2)

H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, “Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent,” J. Sol-Gel Sci. Technol. 19(1-3), 205–209 (2000).
[Crossref]

H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani, “Stress and cracks in gel-derived ceramic coatings and thick film formation,” J. Sol-Gel Sci. Technol. 26(1), 681–686 (2003).
[Crossref]

J. Solid State Chem. (1)

Y. H. Rho and K. Kanamura, “Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method,” J. Solid State Chem. 177(6), 2094–2100 (2004).
[Crossref]

J. Supercond. Nov. Magn. (1)

M. Sivakumar, S. Kanagesan, V. Umapathy, R. Suresh Babu, and S. Nithiyanantham, “Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer,” J. Supercond. Nov. Magn. 26(3), 725–731 (2013).
[Crossref]

Mater. Res. Bull. (1)

S. Chao, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, “Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process,” Mater. Res. Bull. 47(3), 907–911 (2012).
[Crossref]

Mater. Sci. Appl. (1)

K. Sivaiah, K. N. Kumar, V. Naresh, and S. Buddhudu, “Structural and optical properties of Li+: PVP & Ag+: PVP polymer films,” Mater. Sci. Appl. 2(11), 1688–1696 (2011).
[Crossref]

Nano Lett. (1)

S. Oh, H. Song, and J. Oh, “An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

Nanoscale (1)

Y. J. Jang, J.-W. Jang, S. H. Choi, J. Y. Kim, J. H. Kim, D. H. Youn, W. Y. Kim, S. Han, and J. Sung Lee, “Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction,” Nanoscale 7(17), 7624–7631 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

K. T. Fountaine, H. J. Lewerenz, and H. A. Atwater, “Efficiency limits for photoelectrochemical water-splitting,” Nat. Commun. 7(1), 13706 (2016).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

H. S. Park, C.-Y. Lee, and E. Reisner, “Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation,” Phys. Chem. Chem. Phys. 16(41), 22462–22465 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Plan view and (b) Tilted view scanning electron microscope (SEM) images of CuBi2O4 (CBO) films on fluorine doped tin oxide (FTO)-coated glass substrates, synthesized without PVP additives in a precursor solution; (c) Plan view and (b) Tilted view SEM images of CBO films on FTO coated glass substrates, synthesized with PVP additives in a precursor solution. The CBO precursor solution was 1 M Bi(NO3)3⋅5H2O and 0.5 M Cu(NO3)2⋅2.5H2O in DMF and 0.024 M PVP (average MW of 10,000) was used as an additive. The two-step annealing process was used to calcine the CBO films.
Fig. 2
Fig. 2 (a) X-ray diffraction (XRD) patterns of CBO films synthesized with (w/) and without (w/o) PVP on FTO substrates. (b) Tauc plot of the CBO films on quartz substrates. The inset shows the corresponding absorbance.
Fig. 3
Fig. 3 Photograph and SEM images of CBO films synthesized at different precursor solution concentrations; Digital photograph images of CBO films from precursor solutions with metal ion concentrations of (a) 0.5 M/0.25 M Bi3+/Cu2+, (b) 1 M/0.5 M Bi3+/Cu2+, and (c) 1.5 M/0.75 M Bi3+/Cu2+; (b)–(f) plan view and (g)–(i) cross-sectional view SEM images of the corresponding CBO films.
Fig. 4
Fig. 4 Plan view SEM images of CBO film synthesized by (a) two- and (b) one-step annealing process; (c) and (d) are cross-sections of (a) and (b), respectively.
Fig. 5
Fig. 5 Linear sweep voltammetry scans of CBO films synthesized with (a) Various precursor solution concentrations, and with (b) Different annealing processes. All measurements were performed in 0.1 M NaOH (pH 12.8) saturated with O2 under AM 1.5 G illumination (100 mW cm−2). Solid and dash-dot lines indicate back and front-side illumination, respectively. Dotted lines represent the dark current density.
Fig. 6
Fig. 6 Chronoamperometric measurement at 0.4 V vs RHE for the CBO thin film synthesized by two-step annealing process.
Fig. 7
Fig. 7 (a) SEM image of CuBi2O4 (CBO) film synthesized with PVP molecular weight of 40,000. (b) XRD spectra of CBO film synthesized with PVP molecular weight of 40,000.
Fig. 8
Fig. 8 (a) X-ray diffraction (XRD) spectra of CBO films synthesized by two- and one-step annealing processes. (b) The crystallite sizes of the corresponding CBO films determined by the Scherrer equation.
Fig. 9
Fig. 9 (a) FT-IR spectra of PVP and CBO at different calcination conditions. (b) Raman spectra of CBO at different calcination conditions.
Fig. 10
Fig. 10 SEM images after calcination at 200 °C for 2 h.
Fig. 11
Fig. 11 Chopped light linear sweep voltammetry scans of CBO films synthesized without and with PVP. Light was illuminated from the backside of the film.
Fig. 12
Fig. 12 Electrochemical impedance spectroscopy (EIS) of CBO films synthesized by the two- and one-step annealing processes. The inset shows the equivalent circuit model of CBO/FTO photoelectrodes. CFTO-CBO and CCBO-El are the capacitive elements assigned to the CBO/FTO and CBO/electrolyte interfaces, respectively, and RFTO-CBO and RCBO-El are the resistance at the FTO/CBO and CBO/electrolyte interfaces, respectively. Rs is the series resistance.
Fig. 13
Fig. 13 UV-visible absorption spectra of CBO films synthesized by two- and one-step annealing processes.

Tables (1)

Tables Icon

Table 1 Resistances obtained from the EIS analysis of CBO photocathodes with different annealing profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PVP metal ratio = Total metal concentration(M) PVP average MW PVP monomer MW ×PVP concentration(M)

Metrics