Abstract

Simulations of near-field thermophotovoltaic devices predict promising performance, but experimental observations remain challenging. Having the lowest bandgap among III-V semiconductors, indium antimonide (InSb) is an attractive choice for the photovoltaic cell, provided it is cooled to a low temperature, typically around 77 K. Here, by taking into account fabrication and operating constraints, radiation transfer and low-injection charge transport simulations are made to find the optimum architecture for the photovoltaic cell. Appropriate optical and electrical properties of indium antimonide are used. In particular, impact of the Moss-Burstein effects on the interband absorption coefficient of n-type degenerate layers, and of parasitic sub-bandgap absorption by the free carriers and phonons are accounted for. Micron-sized cells are required to minimize the huge issue of the lateral series resistance losses. The proposed methodology is presumably relevant for making realistic designs of near-field thermophotovoltaic devices based on low-bandgap III-V semiconductors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-Sensitivity Crystal Infrared Detectors*

M. E. Lasser, P. Cholet, and E. C. Wurst
J. Opt. Soc. Am. 48(7) 468-473 (1958)

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate

Takuya Inoue, Kohei Watanabe, Takashi Asano, and Susumu Noda
Opt. Express 26(2) A192-A208 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
    [Crossref]
  2. M. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Transactions on Energy Conversion 17, 130–142 (2002).
    [Crossref]
  3. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appli. Phys. Lett. 82, 3544–3546 (2003).
    [Crossref]
  4. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
    [Crossref]
  5. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
    [Crossref] [PubMed]
  6. S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
    [Crossref]
  7. K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
    [Crossref]
  8. S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
    [Crossref]
  9. X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
    [Crossref]
  10. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
    [Crossref]
  11. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Reports 3, 1383 (2013).
    [Crossref] [PubMed]
  12. T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
    [Crossref]
  13. I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
    [Crossref]
  14. V. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
    [Crossref]
  15. M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
    [Crossref] [PubMed]
  16. J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
    [Crossref]
  17. K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
    [Crossref]
  18. A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107, 141108 (2015).
    [Crossref]
  19. I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
    [Crossref]
  20. M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
    [Crossref] [PubMed]
  21. S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B 91, 205435 (2015).
    [Crossref]
  22. J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
    [Crossref]
  23. S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express 24, A635–A649 (2016).
    [Crossref] [PubMed]
  24. A. Karalis and J. Joannopoulos, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Reports 6, 28472 (2016).
    [Crossref]
  25. J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
    [Crossref]
  26. M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
    [Crossref]
  27. E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
    [Crossref] [PubMed]
  28. J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
    [Crossref]
  29. M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part i–modeling,” Sol. Energy 141, 323–333 (2017).
    [Crossref]
  30. A. Karalis and J. Joannopoulos, “Transparent and opaque conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells,” Sci. Reports 7, 14046 (2017).
    [Crossref]
  31. J. Z.-J. Lau and B. T. Wong, “Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell,” J. Appl. Phys. 122, 084302 (2017).
    [Crossref]
  32. T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
    [Crossref]
  33. T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
    [Crossref]
  34. M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
    [Crossref]
  35. M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
    [Crossref]
  36. R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
    [Crossref] [PubMed]
  37. N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
    [Crossref]
  38. B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).
  39. J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
    [Crossref]
  40. Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
    [Crossref]
  41. H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
    [Crossref]
  42. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
    [Crossref]
  43. T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26, A192–A208 (2018).
    [Crossref] [PubMed]
  44. M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
    [Crossref]
  45. E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy pp. 1–17 (2018).
  46. H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
    [Crossref]
  47. H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
    [Crossref]
  48. A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).
  49. R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
    [Crossref]
  50. E. Burstein, “Anomalous optical absorption limit in insb,” Phys. Rev. 93, 632 (1954).
    [Crossref]
  51. T. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Sect. B 67, 775 (1954).
    [Crossref]
  52. G. Gobeli and H. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613 (1960).
    [Crossref]
  53. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
    [Crossref]
  54. M. Levinshtein, M. Rumyantsev, and M. Shur, Handbook Series On Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, vol. 1 (World Scientific, 1996).
  55. F. Hopkins and J. Boyd, “Dark current analysis of InSb photodiodes,” Infrared Phys. 24, 391–395 (1984).
    [Crossref]
  56. I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
    [Crossref]
  57. J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
    [Crossref]
  58. S. Maimon and G. Wicks, “n b n detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
    [Crossref]
  59. E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
    [Crossref]
  60. N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
    [Crossref]
  61. A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
    [Crossref]
  62. I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [Crossref]
  63. S. M. Sze and K. K. Ng, Physics of semiconductor devices(John Wiley & Sons, 2006).
    [Crossref]
  64. M. R. Querry, “Optical properties of graphite pellets (A),” J. Opt. Soc. Am. A 2, 54 (1985).
  65. I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
    [Crossref]
  66. W. Anderson, “Absorption constant of pb1-xsnxte and hg1-xcdxte alloys,” Infrared Phys. 20, 363–372 (1980).
    [Crossref]
  67. J. Chu and A. Sher, Physics and properties of narrow gap semiconductors(Springer, 2008).
  68. Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
    [Crossref]
  69. E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
    [Crossref]
  70. R. Kim and M. Lundstrom, “Notes on fermi-dirac integrals,” arXiv preprint arXiv:0811.0116 (2008).
  71. J. Blakemore, Semiconductor Statistics, International Series of Monographs on Semiconductors, Vol. 3 (Pergamon Press: Oxford, 1962).
  72. X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
    [Crossref]
  73. P. Van Halen and D. Pulfrey, “Accurate, short series approximations to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2,” J. Appl. Phys. 57, 5271–5274 (1985).
    [Crossref]
  74. P. Van Halen and D. Pulfrey, “Erratum: Accurate, short series approximation to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 [j. appl. phys. 5 7, 5271 (1985)],” J. Appli. Phys. 59, 2264–2265 (1986).
    [Crossref]
  75. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).
  76. O. Madelung, Physics of III-V compounds(J. Wiley, 1964).
  77. R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26, 803–810 (1965).
    [Crossref]
  78. R. Gammon and E. Palik, “Attenuated-total-reflection spectral linewidth: Analysis of surface-polariton dispersion relations and damping rates,” JOSA 64, 350–356 (1974).
    [Crossref]
  79. D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55, 2192–2193 (1967).
    [Crossref]
  80. J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
    [Crossref]
  81. V. Orlov and G. Sergeev, “Numerical simulation of the transport properties of indium antimonide,” Phys. Solid State 55, 2215–2222 (2013).
    [Crossref]
  82. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
    [Crossref]
  83. N. C. Wyeth, “Sheet resistance component of series resistance in a solar cell as a function of grid geometry,” Solid-State Electron. 20, 629–634 (1977).
    [Crossref]
  84. E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
    [Crossref]
  85. D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling,” Semicond. Sci. Technol. 19, 1040 (2004).
    [Crossref]
  86. A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering(John Wiley & Sons, 2003).
    [Crossref]
  87. A. Narayanaswamy and J. Mayo, “Minimum radiative heat transfer between two metallic half-spaces due to propagating waves,” J. Quant. Spectrosc. Radiat. Transf. 184, 254–261 (2016).
    [Crossref]
  88. Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
    [Crossref]
  89. T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
    [Crossref]

2018 (5)

T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Express 26, A192–A208 (2018).
[Crossref] [PubMed]

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
[Crossref]

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

2017 (18)

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
[Crossref] [PubMed]

J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
[Crossref]

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part i–modeling,” Sol. Energy 141, 323–333 (2017).
[Crossref]

A. Karalis and J. Joannopoulos, “Transparent and opaque conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells,” Sci. Reports 7, 14046 (2017).
[Crossref]

J. Z.-J. Lau and B. T. Wong, “Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell,” J. Appl. Phys. 122, 084302 (2017).
[Crossref]

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
[Crossref]

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
[Crossref]

B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

2016 (5)

S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express 24, A635–A649 (2016).
[Crossref] [PubMed]

A. Karalis and J. Joannopoulos, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Reports 6, 28472 (2016).
[Crossref]

J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
[Crossref]

M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
[Crossref]

A. Narayanaswamy and J. Mayo, “Minimum radiative heat transfer between two metallic half-spaces due to propagating waves,” J. Quant. Spectrosc. Radiat. Transf. 184, 254–261 (2016).
[Crossref]

2015 (8)

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107, 141108 (2015).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
[Crossref] [PubMed]

S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B 91, 205435 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

2014 (4)

T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

V. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

2013 (3)

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Reports 3, 1383 (2013).
[Crossref] [PubMed]

V. Orlov and G. Sergeev, “Numerical simulation of the transport properties of indium antimonide,” Phys. Solid State 55, 2215–2222 (2013).
[Crossref]

2012 (1)

2011 (1)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
[Crossref]

2010 (1)

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

2009 (3)

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

2008 (2)

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

2007 (1)

S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

2006 (3)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

S. Maimon and G. Wicks, “n b n detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

2005 (1)

E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
[Crossref]

2004 (1)

D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling,” Semicond. Sci. Technol. 19, 1040 (2004).
[Crossref]

2003 (2)

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appli. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

2002 (2)

M. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Transactions on Energy Conversion 17, 130–142 (2002).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

2001 (2)

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

2000 (1)

J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
[Crossref]

1989 (1)

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

1986 (1)

P. Van Halen and D. Pulfrey, “Erratum: Accurate, short series approximation to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 [j. appl. phys. 5 7, 5271 (1985)],” J. Appli. Phys. 59, 2264–2265 (1986).
[Crossref]

1985 (2)

M. R. Querry, “Optical properties of graphite pellets (A),” J. Opt. Soc. Am. A 2, 54 (1985).

P. Van Halen and D. Pulfrey, “Accurate, short series approximations to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2,” J. Appl. Phys. 57, 5271–5274 (1985).
[Crossref]

1984 (1)

F. Hopkins and J. Boyd, “Dark current analysis of InSb photodiodes,” Infrared Phys. 24, 391–395 (1984).
[Crossref]

1981 (2)

X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
[Crossref]

E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
[Crossref]

1980 (1)

W. Anderson, “Absorption constant of pb1-xsnxte and hg1-xcdxte alloys,” Infrared Phys. 20, 363–372 (1980).
[Crossref]

1977 (1)

N. C. Wyeth, “Sheet resistance component of series resistance in a solar cell as a function of grid geometry,” Solid-State Electron. 20, 629–634 (1977).
[Crossref]

1974 (1)

R. Gammon and E. Palik, “Attenuated-total-reflection spectral linewidth: Analysis of surface-polariton dispersion relations and damping rates,” JOSA 64, 350–356 (1974).
[Crossref]

1967 (1)

D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55, 2192–2193 (1967).
[Crossref]

1965 (1)

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26, 803–810 (1965).
[Crossref]

1960 (1)

G. Gobeli and H. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613 (1960).
[Crossref]

1954 (2)

E. Burstein, “Anomalous optical absorption limit in insb,” Phys. Rev. 93, 632 (1954).
[Crossref]

T. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Sect. B 67, 775 (1954).
[Crossref]

Abautret, J.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Abedin, M. N.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Algora, C.

D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling,” Semicond. Sci. Technol. 19, 1040 (2004).
[Crossref]

Anderson, W.

W. Anderson, “Absorption constant of pb1-xsnxte and hg1-xcdxte alloys,” Infrared Phys. 20, 363–372 (1980).
[Crossref]

Antezza, M.

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

Asano, T.

Aymerich-Humet, X.

X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
[Crossref]

Bagherisereshki, E.

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy pp. 1–17 (2018).

Basu, S.

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Ben-Abdallah, P.

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Reports 3, 1383 (2013).
[Crossref] [PubMed]

Bernardi, M. P.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

Bhatt, G.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Bhatt, G. R.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

Biehs, S.-A.

M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

Blakemore, J.

J. Blakemore, Semiconductor Statistics, International Series of Monographs on Semiconductors, Vol. 3 (Pergamon Press: Oxford, 1962).

Blandre, E.

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

Bong, V. N.-S.

J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
[Crossref]

Boriskina, S. V.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

Boyd, J.

F. Hopkins and J. Boyd, “Dark current analysis of InSb photodiodes,” Infrared Phys. 24, 391–395 (1984).
[Crossref]

Bright, T.

T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
[Crossref]

Buddhiraju, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Burger, T.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in insb,” Phys. Rev. 93, 632 (1954).
[Crossref]

Camargo, E.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Camargo, E. G.

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Caughey, D.

D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55, 2192–2193 (1967).
[Crossref]

Celanovic, I.

Chang, J.-Y.

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

Chapuis, P.-O.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

Chen, G.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appli. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Chen, J.

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

Chen, K.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
[Crossref]

Chen, S.

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

Chen, X.

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

Chen, Y.-B.

S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

Choy, H.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Choy, H. K.

J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
[Crossref]

Christol, P.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Chu, J.

J. Chu and A. Sher, Physics and properties of narrow gap semiconductors(Springer, 2008).

Cluzel, R.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Cordat, A.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

Cravalho, E. G.

M. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Transactions on Energy Conversion 17, 130–142 (2002).
[Crossref]

DeSutter, J.

J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
[Crossref]

DiMatteo, R. S.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Djuric, Z.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Dong, Q.

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

Duan, Y.

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
[Crossref]

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

Dupré, O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

Elsayed-Ali, H. E.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Elzouka, M.

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part i–modeling,” Sol. Energy 141, 323–333 (2017).
[Crossref]

Endo, H.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Evirgen, A.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Fan, D.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Fan, H.

G. Gobeli and H. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613 (1960).
[Crossref]

Fan, S.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
[Crossref]

Ferron, A.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Finberg, S. L.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Fiorino, A.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

Fleury, J.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Fonstad, C.

J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
[Crossref]

Fonstad, C. G.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Forrest, S. R.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Francoeur, M.

J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
[Crossref]

N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Fu, C.

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Gammon, R.

R. Gammon and E. Palik, “Attenuated-total-reflection spectral linewidth: Analysis of surface-polariton dispersion relations and damping rates,” JOSA 64, 350–356 (1974).
[Crossref]

Gobeli, G.

G. Gobeli and H. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613 (1960).
[Crossref]

González-Cuevas, J. A.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Goto, H.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Greffet, J.-J.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Greiff, P.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Hanamura, K.

N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
[Crossref]

Hegedus, S.

A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering(John Wiley & Sons, 2003).
[Crossref]

Hopkins, F.

F. Hopkins and J. Boyd, “Dark current analysis of InSb photodiodes,” Infrared Phys. 24, 391–395 (1984).
[Crossref]

Hsu, W.-C.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

Huang, Y.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

Ilic, O.

Inoue, T.

Ishida, M.

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Jablan, M.

Jacob, Z.

S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B 91, 205435 (2015).
[Crossref]

Jin, S.

Joannopoulos, J.

A. Karalis and J. Joannopoulos, “Transparent and opaque conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells,” Sci. Reports 7, 14046 (2017).
[Crossref]

A. Karalis and J. Joannopoulos, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Reports 6, 28472 (2016).
[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107, 141108 (2015).
[Crossref]

Joannopoulos, J. D.

Joulain, K.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Jovic, V.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Kanno, I.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Karalis, A.

A. Karalis and J. Joannopoulos, “Transparent and opaque conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells,” Sci. Reports 7, 14046 (2017).
[Crossref]

A. Karalis and J. Joannopoulos, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Reports 6, 28472 (2016).
[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107, 141108 (2015).
[Crossref]

Katagiri, M.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Kim, J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

Kim, R.

R. Kim and M. Lundstrom, “Notes on fermi-dirac integrals,” arXiv preprint arXiv:0811.0116 (2008).

King, W.

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

Komiya, A.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

Kuze, N.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Lai, J.

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

Lapas, L. C.

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Latella, I.

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

Lau, J. Z.-J.

J. Z.-J. Lau and B. T. Wong, “Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell,” J. Appl. Phys. 122, 084302 (2017).
[Crossref]

J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
[Crossref]

Lazic, Z.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Lee, B. J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express 24, A635–A649 (2016).
[Crossref] [PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
[Crossref] [PubMed]

Lee, I.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

Lee, K.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Lee, S. S.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express 24, A635–A649 (2016).
[Crossref] [PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
[Crossref] [PubMed]

Lenert, A.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Levinshtein, M.

M. Levinshtein, M. Rumyantsev, and M. Shur, Handbook Series On Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, vol. 1 (World Scientific, 1996).

Liang, H.

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

Liao, T.

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

Lim, M.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express 24, A635–A649 (2016).
[Crossref] [PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
[Crossref] [PubMed]

Lin, C.

B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).

Lipson, M.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Litwin-Staszewska, E.

E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
[Crossref]

Liu, D.

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

Liu, X.

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

Livada, B.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Lucarini, V.

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).

Lundstrom, M.

R. Kim and M. Lundstrom, “Notes on fermi-dirac integrals,” arXiv preprint arXiv:0811.0116 (2008).

Luque, A.

A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering(John Wiley & Sons, 2003).
[Crossref]

Madelung, O.

O. Madelung, Physics of III-V compounds(J. Wiley, 1964).

Maimon, S.

S. Maimon and G. Wicks, “n b n detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[Crossref]

Martín, D.

D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling,” Semicond. Sci. Technol. 19, 1040 (2004).
[Crossref]

Martinez, F.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Maruyama, S.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

Masaki, M. M.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Matic, M.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Mayo, J.

A. Narayanaswamy and J. Mayo, “Minimum radiative heat transfer between two metallic half-spaces due to propagating waves,” J. Quant. Spectrosc. Radiat. Transf. 184, 254–261 (2016).
[Crossref]

Mengüç, M. P.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Messina, R.

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Reports 3, 1383 (2013).
[Crossref] [PubMed]

Meyer, J. á.

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Meyhofer, E.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

Miguel Rubi, J.

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

Millan, J.

X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
[Crossref]

Mirmoosa, M.

M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
[Crossref]

M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
[Crossref]

Mittapally, R.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

Molesky, S.

S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B 91, 205435 (2015).
[Crossref]

Morishita, T.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Moss, T.

T. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Sect. B 67, 775 (1954).
[Crossref]

Mueller, K.

E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
[Crossref]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Murase, Y.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Nakamura, T.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and J. Mayo, “Minimum radiative heat transfer between two metallic half-spaces due to propagating waves,” J. Quant. Spectrosc. Radiat. Transf. 184, 254–261 (2016).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appli. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Ndao, S.

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part i–modeling,” Sol. Energy 141, 323–333 (2017).
[Crossref]

Nedelcu, A.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of semiconductor devices(John Wiley & Sons, 2006).
[Crossref]

Noda, S.

Nouchi, R.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Okajima, J.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

Omelyanovich, M.

M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
[Crossref]

Orlov, V.

V. Orlov and G. Sergeev, “Numerical simulation of the transport properties of indium antimonide,” Phys. Solid State 55, 2215–2222 (2013).
[Crossref]

Palasantzas, G.

V. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

Palik, E.

R. Gammon and E. Palik, “Attenuated-total-reflection spectral linewidth: Analysis of surface-polariton dispersion relations and damping rates,” JOSA 64, 350–356 (1974).
[Crossref]

Pan, J. L.

J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
[Crossref]

Park, K.

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

Peiponen, K.-E.

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).

Pejcinovic, B.

E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
[Crossref]

Peng, W.

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

Perez, J.

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Pérez-Madrid, A.

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

Piotrzkowski, R.

E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
[Crossref]

Pulfrey, D.

P. Van Halen and D. Pulfrey, “Erratum: Accurate, short series approximation to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 [j. appl. phys. 5 7, 5271 (1985)],” J. Appli. Phys. 59, 2264–2265 (1986).
[Crossref]

P. Van Halen and D. Pulfrey, “Accurate, short series approximations to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2,” J. Appl. Phys. 57, 5271–5274 (1985).
[Crossref]

Querry, M. R.

M. R. Querry, “Optical properties of graphite pellets (A),” J. Opt. Soc. Am. A 2, 54 (1985).

Ram-Mohan, L. á.

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Reddy, P.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

Refaat, T. F.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Rothman, J.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Rubi, J. M.

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

Rumyantsev, M.

M. Levinshtein, M. Rumyantsev, and M. Shur, Handbook Series On Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, vol. 1 (World Scientific, 1996).

Saarinen, J. J.

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).

Sabbaghi, P.

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

Sanderson, R.

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26, 803–810 (1965).
[Crossref]

Santhanam, P.

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
[Crossref]

Sato, M.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Sawada, K.

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Sergeev, G.

V. Orlov and G. Sergeev, “Numerical simulation of the transport properties of indium antimonide,” Phys. Solid State 55, 2215–2222 (2013).
[Crossref]

Serra-Mestres, F.

X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
[Crossref]

Sher, A.

J. Chu and A. Sher, Physics and properties of narrow gap semiconductors(Springer, 2008).

Shur, M.

M. Levinshtein, M. Rumyantsev, and M. Shur, Handbook Series On Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, vol. 1 (World Scientific, 1996).

Sijercic, E.

E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
[Crossref]

Sik, H.

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

Simovski, C.

M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
[Crossref]

M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
[Crossref]

Smiljanic, M.

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

Soljacic, M.

Song, J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

St-Gelais, R.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

Sugiura, O.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Svetovoy, V.

V. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of semiconductor devices(John Wiley & Sons, 2006).
[Crossref]

Szymanska, W.

E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
[Crossref]

Teo, K. H.

B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).

Tervo, E.

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy pp. 1–17 (2018).

Thomas, R.

D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55, 2192–2193 (1967).
[Crossref]

Thompson, D.

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

Tokuo, S.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Tong, J. K.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

Tsurimaki, Y.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

Ueno, K.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Vaillon, R.

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Van Halen, P.

P. Van Halen and D. Pulfrey, “Erratum: Accurate, short series approximation to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 [j. appl. phys. 5 7, 5271 (1985)],” J. Appli. Phys. 59, 2264–2265 (1986).
[Crossref]

P. Van Halen and D. Pulfrey, “Accurate, short series approximations to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2,” J. Appl. Phys. 57, 5271–5274 (1985).
[Crossref]

Vartiainen, E. M.

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).

Vongsoasup, N.

N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

Wang, B.

B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).

Wang, L.

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
[Crossref]

Watanabe, K.

Watjen, J.

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

Whale, M.

M. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Transactions on Energy Conversion 17, 130–142 (2002).
[Crossref]

Wicks, G.

S. Maimon and G. Wicks, “n b n detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[Crossref]

Wong, B. T.

J. Z.-J. Lau and B. T. Wong, “Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell,” J. Appl. Phys. 122, 084302 (2017).
[Crossref]

J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
[Crossref]

Wyeth, N. C.

N. C. Wyeth, “Sheet resistance component of series resistance in a solar cell as a function of grid geometry,” Solid-State Electron. 20, 629–634 (1977).
[Crossref]

Yanagita, Y.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Yang, Y.

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

Yang, Z.

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
[Crossref]

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

Yokoyama, A.

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

Yoshihara, F.

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Young-Waithe, K. A.

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

Yu, H.

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
[Crossref]

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

Zhai, X.

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

Zhang, Z.

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
[Crossref]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy pp. 1–17 (2018).

Zhao, B.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

Zhu, L.

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

ACS nano (1)

R. St-Gelais, G. R. Bhatt, L. Zhu, S. Fan, and M. Lipson, “Hot carrier-based near-field thermophotovoltaic energy conversion,” ACS nano 11, 3001–3009 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Appl. Phys. Lett. (4)

K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett. 107, 091106 (2015).
[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107, 141108 (2015).
[Crossref]

R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79, 1894–1896 (2001).
[Crossref]

S. Maimon and G. Wicks, “n b n detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[Crossref]

Appli. Phys. Lett. (1)

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appli. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Electron. Lett. (1)

A. Evirgen, J. Abautret, J. Perez, A. Cordat, A. Nedelcu, and P. Christol, “Midwave infrared InSb nbn photodetector,” Electron. Lett. 50, 1472–1473 (2014).
[Crossref]

Energy Convers. Manag. (1)

T. Liao, Z. Yang, W. Peng, X. Chen, and J. Chen, “Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency,” Energy Convers. Manag. 152, 214–220 (2017).
[Crossref]

IEEE Transactions on Electron Devices (2)

T. Liao, Z. Yang, Q. Dong, X. Chen, and J. Chen, “Performance evaluation and parametric optimum choice criteria of a near-field thermophotovoltaic cell,” IEEE Transactions on Electron Devices 64, 4144–4148 (2017).
[Crossref]

J. L. Pan, H. K. Choy, and C. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions on Electron Devices 47, 241–249 (2000).
[Crossref]

IEEE Transactions on Energy Conversion (2)

M. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Transactions on Energy Conversion 17, 130–142 (2002).
[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Transactions on Energy Conversion 26, 686–698 (2011).
[Crossref]

Infrared Phys. (3)

Z. Djuric, B. Livada, V. Jovic, M. Smiljanic, M. Matic, and Z. Lazic, “Quantum efficiency and responsivity of InSb photodiodes utilizing the moss-burstein effect,” Infrared Phys. 29, 1–7 (1989).
[Crossref]

F. Hopkins and J. Boyd, “Dark current analysis of InSb photodiodes,” Infrared Phys. 24, 391–395 (1984).
[Crossref]

W. Anderson, “Absorption constant of pb1-xsnxte and hg1-xcdxte alloys,” Infrared Phys. 20, 363–372 (1980).
[Crossref]

Int J. Heat Mass Transf. (1)

J.-Y. Chang, Y. Yang, and L. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int J. Heat Mass Transf. 87, 237–247 (2015).
[Crossref]

Int. J. Energy Res. (2)

S. Basu, Y.-B. Chen, and Z. Zhang, “Microscale radiation in thermophotovoltaic devices — a review,” Int. J. Energy Res. 31, 689–716 (2007).
[Crossref]

S. Basu, Z. Zhang, and C. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33, 1203–1232 (2009).
[Crossref]

Int. J. Heat and Mass Transf. (1)

H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat and Mass Transf. 123, 67–74 (2018).
[Crossref]

Int. J. Heat Mass Transf. (1)

N. Vongsoasup, M. Francoeur, and K. Hanamura, “Performance analysis of near-field thermophotovoltaic system with 2d grating tungsten radiator,” Int. J. Heat Mass Transf. 115, 326–332 (2017).
[Crossref]

J Quant. Spectrosc. Radiat. Transf. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

J. Appl. Phys. (7)

X. Zhai, J. Lai, H. Liang, and S. Chen, “Performance analysis of thermophotovoltaic system with an equivalent cut-off body emitter,” J. Appl. Phys. 108, 074507 (2010).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. Miguel Rubi, “Near-field thermodynamics: Useful work, efficiency, and energy harvesting,” J. Appl. Phys. 115, 124307 (2014).
[Crossref]

J. Z.-J. Lau and B. T. Wong, “Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell,” J. Appl. Phys. 122, 084302 (2017).
[Crossref]

P. Van Halen and D. Pulfrey, “Accurate, short series approximations to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2,” J. Appl. Phys. 57, 5271–5274 (1985).
[Crossref]

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parameters for iii–v compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[Crossref]

J. Abautret, J. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, “Electrical modeling of InSb pin photodiode for avalanche operation,” J. Appl. Phys. 113, 183716 (2013).
[Crossref]

J. Appli. Phys. (1)

P. Van Halen and D. Pulfrey, “Erratum: Accurate, short series approximation to fermi–dirac integrals of order- 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 [j. appl. phys. 5 7, 5271 (1985)],” J. Appli. Phys. 59, 2264–2265 (1986).
[Crossref]

J. Crys. Growth (1)

N. Kuze, T. Morishita, E. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Tokuo, and H. Goto, “Development of uncooled miniaturized InSb photovoltaic infrared sensors for temperature measurements,” J. Crys. Growth 311, 1889–1892 (2009).
[Crossref]

J. Heat Transf. (3)

J. Watjen, X. Liu, B. Zhao, and Z. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transf. 139, 052704 (2017).
[Crossref]

Y. Yang, J.-Y. Chang, P. Sabbaghi, and L. Wang, “Performance analysis of a near-field thermophotovoltaic device with a metallodielectric selective emitter and electrical contacts for the photovoltaic cell,” J. Heat Transf. 139, 052701 (2017).
[Crossref]

T. Bright, L. Wang, and Z. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transf. 136, 062701 (2014).
[Crossref]

J. Opt. (1)

M. Mirmoosa, M. Omelyanovich, and C. Simovski, “Microgap thermophotovoltaic systems with low emission temperature and high electric output,” J. Opt. 18, 115104 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

M. R. Querry, “Optical properties of graphite pellets (A),” J. Opt. Soc. Am. A 2, 54 (1985).

J. Photonics for Energy (1)

B. Wang, C. Lin, and K. H. Teo, “Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis,” J. Photonics for Energy 7, 044501 (2017).

J. Phys. Chem. Solids (1)

R. Sanderson, “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26, 803–810 (1965).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (7)

A. Narayanaswamy and J. Mayo, “Minimum radiative heat transfer between two metallic half-spaces due to propagating waves,” J. Quant. Spectrosc. Radiat. Transf. 184, 254–261 (2016).
[Crossref]

Y. Tsurimaki, P.-O. Chapuis, J. Okajima, A. Komiya, S. Maruyama, and R. Vaillon, “Coherent regime and far-to-near-field transition for radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 187, 310–321 (2017).
[Crossref]

J. Z.-J. Lau, V. N.-S. Bong, and B. T. Wong, “Parametric investigation of nano-gap thermophotovoltaic energy conversion,” J. Quant. Spectrosc. Radiat. Transf. 171, 39–49 (2016).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

K. Park, S. Basu, W. King, and Z. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008).
[Crossref]

H. Yu, D. Liu, Y. Duan, and Z. Yang, “Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transf. 217, 235–242 (2018).
[Crossref]

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

JOSA (1)

R. Gammon and E. Palik, “Attenuated-total-reflection spectral linewidth: Analysis of surface-polariton dispersion relations and damping rates,” JOSA 64, 350–356 (1974).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. G. Camargo, K. Ueno, T. Morishita, H. Goto, N. Kuze, K. Sawada, and M. Ishida, “Performance improvement of molecular beam epitaxy grown InSb photodiodes for room temperature operation,” Jpn. J. Appl. Phys. 47, 8430 (2008).
[Crossref]

Microscale Thermophys. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
[Crossref]

Nano Energy (1)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Opt. Eng. (1)

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of in 1–χ ga χ sb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Opt. Express (4)

Phy. Rev. Appl. (1)

M. Mirmoosa, S.-A. Biehs, and C. Simovski, “Super-planckian thermophotovoltaics without vacuum gaps,” Phy. Rev. Appl. 8, 054020 (2017).
[Crossref]

Phys. Rev. (2)

G. Gobeli and H. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613 (1960).
[Crossref]

E. Burstein, “Anomalous optical absorption limit in insb,” Phys. Rev. 93, 632 (1954).
[Crossref]

Phys. Rev. Appl. (2)

J. DeSutter, R. Vaillon, and M. Francoeur, “External luminescence and photon recycling in near-field thermophotovoltaics,” Phys. Rev. Appl. 8, 014030 (2017).
[Crossref]

V. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

Phys. Rev. B (2)

S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B 91, 205435 (2015).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium casimir-lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95, 205404 (2017).
[Crossref]

Phys. Scripta (1)

I. Latella, A. Pérez-Madrid, L. C. Lapas, and J. M. Rubi, “Near-field thermodynamics and nanoscale energy harvesting,” Phys. Scripta 2015, 014026 (2015).
[Crossref]

Phys. Solid State (1)

V. Orlov and G. Sergeev, “Numerical simulation of the transport properties of indium antimonide,” Phys. Solid State 55, 2215–2222 (2013).
[Crossref]

Phys. Status Solidi (b) (1)

E. Litwin-Staszewska, W. Szymańska, and R. Piotrzkowski, “The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures,” Phys. Status Solidi (b) 106, 551–559 (1981).
[Crossref]

Proc. IEEE (1)

D. Caughey and R. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE 55, 2192–2193 (1967).
[Crossref]

Proc. Phys. Soc. Sect. B (1)

T. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Sect. B 67, 775 (1954).
[Crossref]

Rev. Sci. Instruments (1)

I. Kanno, F. Yoshihara, R. Nouchi, O. Sugiura, Y. Murase, T. Nakamura, and M. Katagiri, “Radiation measurements by a cryogenic pn junction InSb detector with operating temperatures up to 115 k,” Rev. Sci. Instruments 74, 3968–3973 (2003).
[Crossref]

Sci. Reports (6)

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Reports 5, 11626 (2015).
[Crossref] [PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Reports 3, 1383 (2013).
[Crossref] [PubMed]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film thermal well emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Reports 5, 10661 (2015).
[Crossref]

A. Karalis and J. Joannopoulos, “Squeezing near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Reports 6, 28472 (2016).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Reports 7, 15860 (2017).
[Crossref] [PubMed]

A. Karalis and J. Joannopoulos, “Transparent and opaque conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells,” Sci. Reports 7, 14046 (2017).
[Crossref]

Scie. Reports (1)

H. Yu, D. Liu, Z. Yang, and Y. Duan, “Simple rectangular gratings as a near-field anti-reflection pattern for GaSb tpv cells,” Scie. Reports 7, 1026 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling,” Semicond. Sci. Technol. 19, 1040 (2004).
[Crossref]

Sol. Energy (1)

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part i–modeling,” Sol. Energy 141, 323–333 (2017).
[Crossref]

Solid-State Electron. (3)

E. Sijerčić, K. Mueller, and B. Pejčinović, “Simulation of InSb devices using drift–diffusion equations,” Solid-State Electron. 49, 1414–1421 (2005).
[Crossref]

X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, “An analytical approximation for the fermi-dirac integral f32 (η),” Solid-State Electron. 24, 981–982 (1981).
[Crossref]

N. C. Wyeth, “Sheet resistance component of series resistance in a solar cell as a function of grid geometry,” Solid-State Electron. 20, 629–634 (1977).
[Crossref]

Other (10)

J. Chu and A. Sher, Physics and properties of narrow gap semiconductors(Springer, 2008).

A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering(John Wiley & Sons, 2003).
[Crossref]

R. Kim and M. Lundstrom, “Notes on fermi-dirac integrals,” arXiv preprint arXiv:0811.0116 (2008).

J. Blakemore, Semiconductor Statistics, International Series of Monographs on Semiconductors, Vol. 3 (Pergamon Press: Oxford, 1962).

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig relations in optical materials research, vol. 110 (SpringerScience & Business Media, 2005).

O. Madelung, Physics of III-V compounds(J. Wiley, 1964).

S. M. Sze and K. K. Ng, Physics of semiconductor devices(John Wiley & Sons, 2006).
[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy pp. 1–17 (2018).

A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol. p. 1 (2018).

M. Levinshtein, M. Rumyantsev, and M. Shur, Handbook Series On Semiconductor Parameters, Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, vol. 1 (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the near-field thermophotovoltaic converter. The parameters to be determined for maximizing electrical power output are in blue bold font. (b) Spectral radiation flux absorbed by the p-n junction and the receiver, when the emitter is either made of graphite and the vacuum gap thickness is d = 100 nm, or a body in the far field. The parameters of the p-n junction are those of case 2-1-1 described in section 3.2.
Fig. 2
Fig. 2 Absorption coefficient of n-doped InSb as a function of doping concentration Nd: (a) at 130 K, comparison of simulations with experimental data in [54]. (b) at 77 K, impact on interband and free carrier absorption.
Fig. 3
Fig. 3 For a vacuum gap thickness d = 100 nm and selected cases in Table 4: (a) electrical power density at the maximum power point (pmax) and radiation flux density absorbed through the interband process - generating electron-hole pairs-(qabs,inter). (b) p-doped, depletion and n-doped layers of the active part of the cell, depletion layer thickness (tdep), and built-in voltage (Vbi). (c) Spectral and spatial distributions of radiation flux density absorbed in discrete layers ( Δ z = 6.25 nm) within the active part of the cell, in cases 2-3-1 and 2-1-1.
Fig. 4
Fig. 4 Impact of the additional series resistance (Rs,add) on: (a) current-voltage characteristics when the radius of the active part of the cell is Rc = 80 μm, (b) electrical power at the maximum power point for three values of Rc, and (c) junction and converter efficiencies when Rc = 80 μm, as a function of the vacuum gap thickness.

Tables (4)

Tables Icon

Table 1 Main band parameters of indium antimonide.

Tables Icon

Table 2 Parameters for calculating the interband absorption coefficient of InSb using the model described in [66].

Tables Icon

Table 3 Parameters of the Caughey-Thomas model for the mobility of electrons and holes in InSb.

Tables Icon

Table 4 Selected values for the variable parameters (18 different cases).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n = N [ F 1 / 2 ( η ) + 15 α k T 4 F 3 / 2 ( η ) + 105 ( α k T ) 2 32 F 5 / 2 ( η ) ]
ε ( ω ) = ε ( 1 + ω L O 2 ω T O 2 ω T O 2 ω 2 i ω γ ω p 2 ω ( ω + i Γ ) )
ω p 2 = N e 2 ε 0 ε m *
Γ = N e 2 ρ m *
μ ( N , T ) = μ min  + μ max ( 300 / T ) θ 1 μ min 1 + ( N N r e f ( T / 300 ) θ 2 ) ϕ
I ( V ) = I ( V ) = j ( V ) A c
V = V ( R s , s u b + R s , l a t ) I ( V )
R s , s u b = ρ e ( N d , s u b , T ) t s u b / A c
R s , l a t = 1 8 π ρ h ( N a , T ) / t p

Metrics