Abstract

We investigate photon recycling at the top subcell in mechanically stacked multi-junction solar cells with nanometer air gaps between the subcells. We determine the incident-angle-dependence of the reflectivity from the rear surface of the top subcell. The results show that more than 30% of the luminescence at the top subcell is reflected at the air gap even for an air gap thickness of 10 nm. In addition, we demonstrate enhanced luminescence extraction in GaAs//InGaAsP dual-junction devices with nanometer air gaps compared to a device with no gap between the subcells. Our findings indicate that an efficient photon recycling can be realized even for air gaps of a few tens of nanometers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

Bias-dependence of luminescent coupling efficiency in multijunction solar cells

Jieyang Jia, Yu Miao, Yangsen Kang, Yijie Huo, Mojgan Mazouchi, Yusi Chen, Li Zhao, Huiyang Deng, Pakapol Supaniratisai, Sara H. AlQahtani, and James S. Harris
Opt. Express 23(7) A219-A231 (2015)

Theoretical performance of multi-junction solar cells combining III-V and Si materials

Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison
Opt. Express 20(S5) A754-A764 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  2. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref] [PubMed]
  3. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  4. E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
    [Crossref]
  5. E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
    [Crossref]
  6. U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
    [Crossref]
  7. U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
    [Crossref] [PubMed]
  8. G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
    [Crossref]
  9. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
    [Crossref]
  10. X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
    [Crossref]
  11. V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
    [Crossref]
  12. M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
    [Crossref]
  13. M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
    [Crossref]
  14. A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
    [Crossref]
  15. C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
    [Crossref]
  16. D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
    [Crossref]
  17. M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
    [Crossref]
  18. M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
    [Crossref]
  19. D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
    [Crossref]
  20. R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
    [Crossref]
  21. J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
    [Crossref]
  22. V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
    [Crossref]
  23. I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
    [Crossref]
  24. H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
    [Crossref]
  25. H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
    [Crossref]
  26. H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
    [Crossref]
  27. T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
    [Crossref]
  28. Z. L. Liau and A. A. Liau, “Nanometer air gaps in semiconductor wafer bonding,” Appl. Phys. Lett. 78(23), 3726–3728 (2001).
    [Crossref]
  29. T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
    [Crossref]
  30. M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
    [Crossref]
  31. T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
    [Crossref]
  32. J. Burdick and T. Glatfelter, “Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells,” Sol. Cells 18(3-4), 301–314 (1986).
    [Crossref]
  33. M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
    [Crossref]
  34. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
    [Crossref]

2018 (2)

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

2017 (5)

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

2016 (4)

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

2015 (7)

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

2014 (4)

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
[Crossref]

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
[Crossref]

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
[Crossref]

2013 (2)

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

2012 (4)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
[Crossref]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2006 (1)

G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
[Crossref]

2003 (1)

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

2001 (1)

Z. L. Liau and A. A. Liau, “Nanometer air gaps in semiconductor wafer bonding,” Appl. Phys. Lett. 78(23), 3726–3728 (2001).
[Crossref]

1986 (2)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

J. Burdick and T. Glatfelter, “Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells,” Sol. Cells 18(3-4), 301–314 (1986).
[Crossref]

Aihara, T.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

Algora, C.

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

Al-Okaily, A. M.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Atwater, H. A.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Baba, M.

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

Baur, C.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Bett, A. W.

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
[Crossref]

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Bläsi, B.

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

Burdick, J.

J. Burdick and T. Glatfelter, “Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells,” Sol. Cells 18(3-4), 301–314 (1986).
[Crossref]

Chiu, P. T.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

Corbett, B.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Dimroth, F.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

Duda, A.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Fernandez, E.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Ferreira, P.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

France, R. M.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

Friedman, D. J.

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

Ganapati, V.

V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

Garcia, I.

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

García, I.

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

Geisz, J. F.

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

Glatfelter, T.

J. Burdick and T. Glatfelter, “Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells,” Sol. Cells 18(3-4), 301–314 (1986).
[Crossref]

Glunz, S. W.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

Green, M. A.

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

Heckelmann, S.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

Hermle, M.

G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
[Crossref]

Ho, C.-S.

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

Höhn, O.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

Hozumi, Y.

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

Kayes, B. M.

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Kim, J. Y.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

King, R. R.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

Kirchartz, T.

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
[Crossref]

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

Klinger, V.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

Kosten, E. D.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Kurtz, S. R.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Lan, D.

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

Letay, G.

G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
[Crossref]

Létay, G.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Li, X.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Liau, A. A.

Z. L. Liau and A. A. Liau, “Nanometer air gaps in semiconductor wafer bonding,” Appl. Phys. Lett. 78(23), 3726–3728 (2001).
[Crossref]

Liau, Z. L.

Z. L. Liau and A. A. Liau, “Nanometer air gaps in semiconductor wafer bonding,” Appl. Phys. Lett. 78(23), 3726–3728 (2001).
[Crossref]

Lloyd, J. V.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Makita, K.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
[Crossref]

Masouraki, M.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Mathews, I.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Matsubara, K.

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
[Crossref]

McMahon, W. E.

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

Meusel, M.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Micha, D. N.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Mizuno, H.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
[Crossref]

Mochizuki, T.

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

Morrison, A. P.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Nagato, Y.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

Nakamoto, T.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

Newman, B. K.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

O’Mahony, D.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Ochoa, M.

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

Okano, Y.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

Olavarria, W. J.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

Oliva, E.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

Oshima, R.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

Osterwald, C. R.

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

Paetzold, U. W.

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
[Crossref]

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pelucchi, E.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Polman, A.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Rau, U.

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
[Crossref]

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

Rogers, J. A.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Schilling, C. L.

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

Shen, L.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Sheng, X.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Steiner, M. A.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
[Crossref]

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

Sugaya, T.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

Takato, H.

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

Tayagaki, T.

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

Thomas, K.

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

Walker, A. W.

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

Wang, S.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Ward, J. S.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

Warta, W.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Wilson, W. L.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Yablonovitch, E.

V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
[Crossref]

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

Yamada, N.

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

Young, M.

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

Yun, M. H.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Zhang, C.

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Adv. Energy Mater. (1)

X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers, “Device architectures for enhanced photon recycling in thin-film multijunction solar cells,” Adv. Energy Mater. 5(1), 1400919 (2015).
[Crossref]

Appl. Phys. Express (2)

H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, “High-efficiency III–V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated “smart stack” approach,” Appl. Phys. Express 10(7), 072301 (2017).
[Crossref]

T. Sugaya, T. Tayagaki, T. Aihara, K. Makita, R. Oshima, H. Mizuno, Y. Nagato, T. Nakamoto, and Y. Okano, “Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells,” Appl. Phys. Express 11(5), 052301 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Z. L. Liau and A. A. Liau, “Nanometer air gaps in semiconductor wafer bonding,” Appl. Phys. Lett. 78(23), 3726–3728 (2001).
[Crossref]

H. Mizuno, K. Makita, and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Appl. Phys. Lett. 101(19), 191111 (2012).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

Energy Environ. Sci. (1)

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells,” Energy Environ. Sci. 7(6), 1907–1912 (2014).
[Crossref]

IEEE J. Photovoltaics (9)

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovoltaics 5(1), 61–69 (2015).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit,” IEEE J. Photovoltaics 2(3), 303–311 (2012).
[Crossref]

V. Ganapati, M. A. Steiner, and E. Yablonovitch, “The voltage boost enabled by luminescence extraction in solar cells,” IEEE J. Photovoltaics 6(4), 801–809 (2016).
[Crossref]

M. A. Steiner, J. F. Geisz, J. S. Ward, D. J. Friedman, R. R. King, P. T. Chiu, R. M. France, A. Duda, W. J. Olavarria, M. Young, and S. R. Kurtz, “Optically enhanced photon recycling in mechanically stacked multijunction solar cells,” IEEE J. Photovoltaics 6(1), 358–365 (2016).
[Crossref]

A. W. Walker, O. Höhn, D. N. Micha, B. Bläsi, A. W. Bett, and F. Dimroth, “Impact of photon recycling on GaAs solar cell designs,” IEEE J. Photovoltaics 5(6), 1636–1645 (2015).
[Crossref]

C. L. Schilling, O. Höhn, D. N. Micha, S. Heckelmann, V. Klinger, E. Oliva, S. W. Glunz, and F. Dimroth, “Combining photon recycling and concentrated illumination in a GaAs heterojunction solar cell,” IEEE J. Photovoltaics 8(1), 348–354 (2018).
[Crossref]

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “Effect of luminescent coupling on the optimal design of multijunction solar cells,” IEEE J. Photovoltaics 4(3), 986–990 (2014).
[Crossref]

J. F. Geisz, M. A. Steiner, I. Garcia, R. M. France, W. E. McMahon, C. R. Osterwald, and D. J. Friedman, “Generalized optoelectronic model of series-connected multijunction solar cells,” IEEE J. Photovoltaics 5(6), 1827–1839 (2015).
[Crossref]

V. Ganapati, C.-S. Ho, and E. Yablonovitch, “Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells,” IEEE J. Photovoltaics 5(1), 410–417 (2015).
[Crossref]

J. Appl. Phys. (3)

T. Tayagaki, K. Makita, H. Mizuno, and T. Sugaya, “Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays,” J. Appl. Phys. 122(2), 023101 (2017).
[Crossref]

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda, and S. R. Kurtz, “Optical enhancement of the open-circuit voltage in high quality GaAs solar cells,” J. Appl. Phys. 113(12), 123109 (2013).
[Crossref]

J. Cryst. Growth (1)

R. Oshima, K. Makita, T. Tayagaki, and T. Sugaya, “Enhancement of open circuit voltage in InGaAsP-inverted thin-film solar cells grown by solid-source molecular beam epitaxy,” J. Cryst. Growth 477, 267–271 (2017).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Tayagaki, K. Makita, H. Mizuno, R. Oshima, and T. Sugaya, “Investigation of the open-circuit voltage in mechanically stacked InGaP/GaAs//InGaAsP/InGaAs solar cells,” Jpn. J. Appl. Phys. 56(8S2), 08MC01 (2017).
[Crossref]

M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, “Reduction of bonding resistance of two-terminal III–V/Si tandem solar cells fabricated using smart- stack technology,” Jpn. J. Appl. Phys. 56(12), 122302 (2017).
[Crossref]

H. Mizuno, K. Makita, T. Sugaya, R. Oshima, Y. Hozumi, H. Takato, and K. Matsubara, “Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells,” Jpn. J. Appl. Phys. 55(2), 025001 (2016).
[Crossref]

Light Sci. Appl. (1)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Nat. Mater. (3)

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B Condens. Matter Mater. Phys. 90(3), 035211 (2014).
[Crossref]

Prog. Photovolt. Res. Appl. (4)

G. Letay, M. Hermle, and A. W. Bett, “Simulating single-junction GaAs solar cells including photon recycling,” Prog. Photovolt. Res. Appl. 14(8), 683–696 (2006).
[Crossref]

M. Ochoa, M. A. Steiner, I. García, J. F. Geisz, D. J. Friedman, and C. Algora, “Influence of temperature on luminescent coupling and material quality evaluation in inverted lattice-matched and metamorphic multi-junction solar cells,” Prog. Photovolt. Res. Appl. 24(3), 357–367 (2016).
[Crossref]

I. Mathews, D. O’Mahony, K. Thomas, E. Pelucchi, B. Corbett, and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Prog. Photovolt. Res. Appl. 23(9), 1080–1090 (2015).
[Crossref]

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta, and E. Fernandez, “Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation,” Prog. Photovolt. Res. Appl. 11(8), 499–514 (2003).
[Crossref]

Sol. Cells (1)

J. Burdick and T. Glatfelter, “Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells,” Sol. Cells 18(3-4), 301–314 (1986).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. Lan, J. F. Geisz, M. A. Steiner, I. Garcia, D. J. Friedman, and M. A. Green, “Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells,” Sol. Energy Mater. Sol. Cells 143, 48–51 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of photon recycling and luminescent coupling in multijunction solar cells with nanometer air gaps.
Fig. 2
Fig. 2 Reflectance at the air gap of the top GaAs//bottom subcell structure with 10, 20, and 100 nm gap thicknesses for light with different incident angles.
Fig. 3
Fig. 3 Reflection efficiency for luminescence on the rear surface of the thick (solid) and thin (open) GaAs top subcells as a function of the air gap thickness. Squares: TE wave. Triangles: TM wave. Circles: average.
Fig. 4
Fig. 4 Schematic of the semiconductor wafer bonding using Pd NP arrays. Pd-1: Devices stacked by Pd NPs using weight. Pd-2: Devices stacked by Pd NPs without using weight. No Pd: Devices stacked without using Pd NPs.
Fig. 5
Fig. 5 (a) EQE curves for the GaAs and InGaAsP subcells of the device with no Pd NPs, (b) device with Pd NPs (Pd-1), and (c) device with Pd NPs (Pd-2). (d) Reflectance spectra for normally incident light of the device with no Pd NPs, (e) device with Pd NPs (Pd-1), and (f) device with Pd NPs (Pd-2). (g) Current–voltage curves for the device with no Pd NPs, (h) device with Pd NPs (Pd-1), and (i) device with Pd NPs (Pd-2).
Fig. 6
Fig. 6 (a) PL spectra for different excitation intensities of the device with no Pd NPs, (b) device with Pd NPs (Pd-1), and (c) device with Pd NPs (Pd-2). (d)–(f) PL spectra on log scale. (g) PL intensity for different excitation intensities of the device with no Pd NPs (triangle), with Pd NPs (Pd-1) (square), and with Pd NPs (Pd-2). (h) Normalized PL intensity for an excitation intensity of 83 mW/cm2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T E = [ 1+ ( k 2 + β 2 ) 2 4 k 2 β 2 sin h 2 βa ] 1
T M = [ 1+ ( k 2 / n 4 + β 2 ) 2 4 k 2 β 2 / n 4 sin h 2 βa ] 1 ,
R= 0 π/2 cosθR(θ)sinθdθ .
R= 0 π/2 R(θ)sinθdθ
Δ V oc = k B T q ln( η ext ),

Metrics