Abstract

By using transmission-mode, scattering-type scanning near-field optical microscopy, we characterize the mid-infrared near-field properties of a Yagi-Uda antenna in the emission mode. The underlying near-field properties, including the near-field dipole-dipole coupling between antenna elements, are clearly observed. Moreover, even though most of the radiation energy is emitted into the substrate, by adopting two detector antennas, we managed to verify the unidirectionality and frequency-selectivity of the Yagi-Uda antenna in the air side. All the experimental results presented in this work are in good qualitative agreement with our numerical simulations. Our work on the Yagi-Uda antenna could help lead to novel methods for mid-infrared material analysis and bio-sensing. It should also be applicable in all-optical processing like radiation routers or a chromatic discriminator.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna

Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst
Opt. Express 16(14) 10858-10866 (2008)

Design considerations of super-directive nanoantennas for core-shell nanowires

Abdelrahman M. Ghanim, Mohamed Hussein, Mohamed Farhat O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 35(1) 182-188 (2018)

Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission

K. R. Mahmoud, Mohamed Hussein, Mohamed Farhat. O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 34(10) 2041-2049 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  2. M. Agio and A. Alù, Optical antennas (Cambridge University Press, 2013).
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  4. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  5. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
    [Crossref]
  6. A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
    [Crossref] [PubMed]
  7. T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
    [Crossref]
  8. A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
    [Crossref] [PubMed]
  9. Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
    [Crossref]
  10. P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry, vol. 171 (John Wiley & Sons, 2007).
    [Crossref]
  11. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [Crossref] [PubMed]
  12. F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref] [PubMed]
  13. A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
    [Crossref] [PubMed]
  14. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref] [PubMed]
  15. W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
    [Crossref]
  16. X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
    [Crossref] [PubMed]
  17. A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
    [Crossref]
  18. A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
    [Crossref] [PubMed]
  19. P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
    [Crossref] [PubMed]
  20. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express 16, 10858–10866 (2008).
    [Crossref] [PubMed]
  21. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
    [Crossref]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  23. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
    [Crossref] [PubMed]
  24. J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
    [Crossref] [PubMed]
  25. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  26. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
    [Crossref]
  27. J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
    [Crossref] [PubMed]
  28. M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
    [Crossref]
  29. E. Hecht, Optics (Addison Wesley, 1997).
  30. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
    [Crossref] [PubMed]
  31. A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
    [Crossref] [PubMed]
  32. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).
  33. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2012).
    [Crossref]

2018 (1)

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

2017 (1)

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

2016 (1)

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

2015 (2)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

2014 (4)

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
[Crossref] [PubMed]

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (7)

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

2010 (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

2009 (2)

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

2008 (5)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express 16, 10858–10866 (2008).
[Crossref] [PubMed]

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
[Crossref] [PubMed]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Agio, M.

M. Agio and A. Alù, Optical antennas (Cambridge University Press, 2013).

Ahmed, A.

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Alonso-González, P.

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
[Crossref] [PubMed]

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Alù, A.

M. Agio and A. Alù, Optical antennas (Cambridge University Press, 2013).

Andryieuski, A.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Basov, D. N.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Belov, P. A.

Birer, Ö.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Bozhevolnyi, S.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Cai, W.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Casanova, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Centeno, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Chang, D.

F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Chen, J.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Cheon, S.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Choe, J. H.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Coenen, T.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

de Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry, vol. 171 (John Wiley & Sons, 2007).
[Crossref]

Deutsch, B.

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

Dorfmuller, J.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Esslinger, M.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Forbert, H.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

García de Abajo, F.

F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Giessen, H.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Golmar, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Gordon, R.

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[Crossref] [PubMed]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry, vol. 171 (John Wiley & Sons, 2007).
[Crossref]

Gutberlet, A.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Hao, Z.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Havenith, M.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2012).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 1997).

Henriksen, E. A.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Hillenbrand, R.

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
[Crossref] [PubMed]

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
[Crossref] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
[Crossref]

Huber, A.

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
[Crossref] [PubMed]

Hueso, L.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Jeong, H.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Jiang, Z.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Jones, A. C.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Kaczmarek, A.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Kern, K.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Khunsin, W.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

Kim, J.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Kim, P.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Kim, U. J.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Koenderink, A. F.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Koppens, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
[Crossref]

Krahne, R.

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

Krasnok, A. E.

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Lavrinenko, A.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Lee, J.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Luo, W.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Malureanu, R.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Martin, M. C.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Marx, D.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Masia, M.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Miscuglio, M.

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Navickaite, G.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Nikitin, A. Y.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
[Crossref] [PubMed]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2012).
[Crossref]

Ocelic, N.

A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
[Crossref] [PubMed]

Olmon, R. L.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

Park, Y.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Pesquera, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Pohl, D.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Raschke, M. B.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Ren, M.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Roh, Y. G.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Schwaab, G.

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

Segerink, F.

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

Shi, B.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Skrabalak, S. E.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Song, I. Y.

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Spirito, D.

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

Stefani, F.

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

Stefani, F. D.

Stormer, H.

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Taminiau, T.

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express 16, 10858–10866 (2008).
[Crossref] [PubMed]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Van Hulst, N.

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express 16, 10858–10866 (2008).
[Crossref] [PubMed]

Vélez, S.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Volkov, V.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Wiley, B. J.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Wu, W.

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Xia, Y. N.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Xiang, Y.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Xu, J.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

Zenin, V.

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

Zhang, N.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Zhang, X.

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Zurutuza, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

M. Miscuglio, D. Spirito, R. P. Zaccaria, and R. Krahne, “Shape approaches for enhancing plasmon propagation in graphene,” ACS Photonics 3, 2170–2175 (2016).
[Crossref]

Adv. Mater. (1)

W. Luo, W. Cai, Y. Xiang, W. Wu, B. Shi, X. Jiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “In-plane electrical connectivity and near-field concentration of isolated graphene resonators realized by ion beams,” Adv. Mater. 29, 1701083 (2017).
[Crossref]

Appl. Phys. Lett. (1)

A. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[Crossref]

J. Microsc. (1)

A. Huber, N. Ocelic, and R. Hillenbrand, “Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy,” J. Microsc. 229, 389–395 (2008).
[Crossref] [PubMed]

Nano Lett. (8)

F. Koppens, D. Chang, and F. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14, 2896 (2014).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[Crossref] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagi–uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical yagi-uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[Crossref] [PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

A. Andryieuski, V. Zenin, R. Malureanu, V. Volkov, S. Bozhevolnyi, and A. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925 (2014).
[Crossref] [PubMed]

J. Kim, Y. G. Roh, S. Cheon, J. H. Choe, J. Lee, J. Lee, H. Jeong, U. J. Kim, Y. Park, and I. Y. Song, “Babinet-inverted optical yagi–Uda antenna for unidirectional radiation to free space,” Nano Lett. 14, 3072–3078 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

X. Jiang, W. Cai, W. Luo, Y. Xiang, N. Zhang, M. Ren, X. Zhang, and J. Xu, “Near-field imaging of graphene triangles patterned by helium ion lithography,” Nanotechnology 29, 385205 (2018).
[Crossref] [PubMed]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[Crossref] [PubMed]

Nature Commun. (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nature Commun. 2, 267 (2011).
[Crossref]

Nature Nanotech. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Nature Photon. (2)

T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nature Photon. 4, 312–315 (2010).
[Crossref]

Nature Phys. (1)

Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Phys. 4, 532–535 (2008).
[Crossref]

Opt. Express (2)

Science (7)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

A. Gutberlet, G. Schwaab, Ö. Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, “Aggregation-induced dissociation of hcl (h2o) 4 below 1 k: the smallest droplet of acid,” Science 324, 1545–1548 (2009).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344, 1369–1373 (2014).
[Crossref] [PubMed]

Other (5)

M. Agio and A. Alù, Optical antennas (Cambridge University Press, 2013).

P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry, vol. 171 (John Wiley & Sons, 2007).
[Crossref]

E. Hecht, Optics (Addison Wesley, 1997).

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic setup of a transmission-mode scattering-type near-field optical microscopy. An x-polarized laser beam illuminates the antennas from the bottom of the CaF2 substrate. The near fields of the antennas excited by the incident laser are scattered by an AFM tip and then detected interferometrically with a reference beam, yielding amplitude and phase images of the near-fields.
Fig. 2
Fig. 2 (a) The total radiated power of three-element Yagi-Uda antenna (solid blue line, director-feed-reflector, dfr) and five-element Yagi-Uda antenna (dashed red line, dddfr). (b) and (c) depict the maximal directivity of dfr and dddfr in the whole space and in the xy plane, respectively.
Fig. 3
Fig. 3 (a) and (b) show the simulated directivities of a single feed element and a three-element Yagi-Uda antenna (director-feed-reflector, dfr) under 9.3 μm wavelength illumination, respectively. The emission is equally distributed on the left and right sides of a single feed element while strongly directed to the left side of the dfr. (c) and (d) depict the directivities of a single feed element, dfr and a five-element Yagi-Uda antenna (dddfr) at 9.3 μm in the xz and xy plane, respectively. The directivity of the dfr at 10.5 μm is plotted to present the frequency selectivity.
Fig. 4
Fig. 4 Near field of a feed antenna and two nearby detector antennas measured by a transmission-mode s-SNOM at 9.3 μm. (a) The AFM topography. (b) Experimental near-field images showing Re(Ez)=|Ez |cosφz. (c) Line-profiles of |Ez| along the detector antennas. (d) FEM calculated near-field Re(Ez).
Fig. 5
Fig. 5 Verification of the unidirectionality of three-element Yagi-Uda antennas. (a)–(d) The distance between the detector antennas and the feed is 6 μm. (a) and (e) Topography images of three-element Yagi-Uda antennas. (e)–(k) The distance between the detector antennas and the feed is 4 μm. (b), (f) and (i) s-SNOM image of the near-field. (c), (g) and (j) Line-profiles of |Ez | along the detector antennas. (d), (h) and (k) Numerically calculated near-field images.
Fig. 6
Fig. 6 Verification of the unidirectionality of dddfr. (a)–(d) The distance between the feed and detector antenna is 12 μm. (e)–(k) The distance between the feed and the detectros is 8 μm. (a) and (e) Topography images of five-element Yagi-Uda antennas. (b), (f) and (i) Experimental near-field images. (c), (g) and (j) Line-profiles of |Ez | along the detector antennas. (d), (h) and (k) Numerically calculated near-field images. .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D ( θ , ϕ ) = 4 π P ( θ , ϕ ) P ( θ , ϕ ) d Ω ,

Metrics