Abstract

Volume Bragg gratings (VBGs) have many applications, including filters, wavelength multiplexing devices, and see-through displays. As a kind of VBGs, polarization volume gratings (PVGs) based on liquid crystal polymer have the advantages of nearly 100% efficiency, large deflection angle, and high polarization selectivity. However, previous reports regarding PVGs did not address high efficiency, tunable periodicity, and flexibility. Here, we report a stretchable, flexible, and rollable PVG film with high diffraction efficiency. The control of PVG by mechanical stretching is investigated, while the Bragg reflection band shift is evaluated quantitatively. Moreover, we quantified the deflection angle change’s behavior, which has promising potential for laser beam steering applications. The mechanical robustness under stretch-release cycles is also scrutinized.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays

Yun-Han Lee, Kun Yin, and Shin-Tson Wu
Opt. Express 25(22) 27008-27014 (2017)

Optical properties of reflective liquid crystal polarization volume gratings

Yun-Han Lee, Ziqian He, and Shin-Tson Wu
J. Opt. Soc. Am. B 36(5) D9-D12 (2019)

Polarization volume grating with high efficiency and large diffraction angle

Yishi Weng, Daming Xu, Yuning Zhang, Xiaohua Li, and Shin-Tson Wu
Opt. Express 24(16) 17746-17759 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
    [Crossref] [PubMed]
  2. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  3. J. W. den Herder, A. C. Brinkman, S. M. Kahn, G. Branduardi-Raymont, K. Thomsen, H. Aarts, M. Audard, J. V. Bixler, A. J. den Boggende, J. Cottam, and T. Decker, “The reflection grating spectrometer on board XMM-Newton,” A&A 365(1), 7–17 (2001).
  4. W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
    [Crossref] [PubMed]
  5. R. Follath, “The versatility of collimated plane grating monochromators,” Nucl. Instrum. Methods Phys. Res. 467-468, 418–425 (2001).
    [Crossref]
  6. J. Lumeau, L. B. Glebov, and V. Smirnov, “Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating,” Opt. Lett. 31(16), 2417–2419 (2006).
    [Crossref] [PubMed]
  7. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
    [Crossref]
  8. J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
    [Crossref]
  9. Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [Crossref] [PubMed]
  10. Y. H. Lee, K. Yin, and S. T. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
    [Crossref] [PubMed]
  11. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
    [Crossref]
  12. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  13. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University, 2007).
  14. T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
    [Crossref] [PubMed]
  15. I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
    [Crossref]
  16. D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
    [Crossref]
  17. F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
    [Crossref] [PubMed]
  18. G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
    [Crossref] [PubMed]
  19. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  20. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [Crossref]
  21. A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
    [Crossref]
  22. F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
    [Crossref]
  23. Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
    [Crossref]
  24. M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
    [Crossref] [PubMed]
  25. J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
    [Crossref]
  26. Y. H. Lee, Z. He, and S. T. Wu, “Optical properties of reflective liquid crystal polarization volume gratings,” J. Opt. Soc. Am. B 36(5), D9–D12 (2019).
    [Crossref]
  27. M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
    [Crossref] [PubMed]
  28. P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
    [Crossref] [PubMed]
  29. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
    [Crossref] [PubMed]
  30. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
    [Crossref] [PubMed]

2019 (1)

2018 (4)

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

2017 (5)

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
[Crossref] [PubMed]

Y. H. Lee, K. Yin, and S. T. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
[Crossref] [PubMed]

2016 (7)

2015 (2)

Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
[Crossref]

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

2014 (1)

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

2006 (1)

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

2001 (4)

R. Follath, “The versatility of collimated plane grating monochromators,” Nucl. Instrum. Methods Phys. Res. 467-468, 418–425 (2001).
[Crossref]

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

1981 (1)

Arafat, Y.

Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
[Crossref]

Babakhanova, G.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Berry, S.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bos, P.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Brasselet, E.

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Broer, D. J.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

Bryant, D.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Burgess, C.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Castles, F.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Chen, C. P.

Chen, H.

Chen, J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Chen, P.

Chigrinov, V. G.

Choi, S. S.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Clark, H.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Coles, H. J.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Duan, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

Dutta, I.

Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
[Crossref]

Elston, S. J.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Endo, T.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Finnemeyer, V.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Follath, R.

R. Follath, “The versatility of collimated plane grating monochromators,” Nucl. Instrum. Methods Phys. Res. 467-468, 418–425 (2001).
[Crossref]

Gao, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Gaylord, T. K.

Ge, S. J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

Glebov, L. B.

Gritsai, Y.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Guo, Y.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

He, Z.

Hendrikx, M.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Hill, L.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Hu, W.

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Hung, J. M. C.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Jeon, H.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Jia, S.

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

Jin, H.

Kasai, I.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Keller, P.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Kobashi, J.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Lavrentovich, O. D.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Lee, Y. H.

Li, T.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Li, X.

Li, Y.

Liang, X.

Lu, Y. Q.

Lumeau, J.

Ma, L. L.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

McGinty, C.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Moharam, M. G.

Mohri, Y.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

Morris, S. M.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Muševic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Naciri, J.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Nosheen, S.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Outram, B. I.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Ozaki, M.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Panat, R.

Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
[Crossref]

Pink, R.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Qasim, M. M.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Rafayelyan, M.

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Ratna, B. R.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Reich, R.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Ryabchun, A.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Sakhno, O.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Schenning, A. P. H. J.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Shenoy, D.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Smirnov, V.

Tabiryan, N. V.

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Tam, A. M.

Tang, M. J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

M. J. Tang, P. Chen, W. L. Zhang, A. M. Tam, V. G. Chigrinov, W. Hu, and Y. Q. Lu, “Integrated and reconfigurable optical paths based on stacking optical functional films,” Opt. Express 24(22), 25510–25514 (2016).
[Crossref] [PubMed]

Tang, Z.

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

Tanijiri, Y.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Thomsen, D. L.

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Tkachenko, G.

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Turiv, T.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Ueda, H.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Wang, F.

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

Wang, J.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Wang, K.

Wang, Y.

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

Wegener, M.

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Wei, B. Y.

Wei, Q. H.

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

Weng, Y.

West, J.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

White, T. J.

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

Wilkinson, T. D.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Wright, A. D.

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

Wu, S. T.

Wu, Y.

Xu, D.

Xu, R.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Yao, J.

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

Yaroshchuk, O.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Yin, K.

Yoshida, H.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Yu, B.

Zhang, W.

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, Y.

Zhang, Z.

Zhou, L.

Zhu, Z. H.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy‐Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[Crossref]

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self‐assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Ryabchun, M. Wegener, Y. Gritsai, and O. Sakhno, “Novel effective approach for the fabrication of PDMS‐based elastic volume gratings,” Adv. Opt. Mater. 4(1), 169–176 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Arafat, I. Dutta, and R. Panat, “Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%,” Appl. Phys. Lett. 107(8), 081906 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Liq. Cryst. (1)

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 44(5), 863–872 (2017).
[Crossref]

Macromolecules (1)

D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34(17), 5868–5875 (2001).
[Crossref]

Nat. Commun. (2)

G. Babakhanova, T. Turiv, Y. Guo, M. Hendrikx, Q. H. Wei, A. P. H. J. Schenning, D. J. Broer, and O. D. Lavrentovich, “Liquid crystal elastomer coatings with programmed response of surface profile,” Nat. Commun. 9(1), 456 (2018).
[Crossref] [PubMed]

W. Zhang and J. Yao, “A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing,” Nat. Commun. 9(1), 1396 (2018).
[Crossref] [PubMed]

Nat. Mater. (2)

F. Castles, S. M. Morris, J. M. C. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13(8), 817–821 (2014).
[Crossref] [PubMed]

T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers,” Nat. Mater. 14(11), 1087–1098 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

R. Follath, “The versatility of collimated plane grating monochromators,” Nucl. Instrum. Methods Phys. Res. 467-468, 418–425 (2001).
[Crossref]

Opt. Data Process. Storage (1)

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (1)

F. Wang, S. Jia, Y. Wang, and Z. Tang, “Near-infrared light-controlled tunable grating based on graphene/elastomer composites,” Opt. Mater. 76, 117–124 (2018).
[Crossref]

Opt. Mater. Express (1)

Opt. Rev. (1)

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Phys. Rev. Lett. (1)

M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116(25), 253902 (2016).
[Crossref] [PubMed]

Other (2)

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University, 2007).

J. W. den Herder, A. C. Brinkman, S. M. Kahn, G. Branduardi-Raymont, K. Thomsen, H. Aarts, M. Audard, J. V. Bixler, A. J. den Boggende, J. Cottam, and T. Decker, “The reflection grating spectrometer on board XMM-Newton,” A&A 365(1), 7–17 (2001).

Supplementary Material (2)

NameDescription
» Visualization 1       Laser beam steering with stretched PVG film.
» Visualization 2       Stretching reliability test of our PVG film.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustrations of PVG structure and stretching process of PVG from unstrained state to strained state. (a) PVG on PDMS without strain. (b) Strained PVG structure.
Fig. 2
Fig. 2 Images of a 3-µm thick PVG on a 160-µm thick PDMS substrate. (a) To clearly observe the diffraction, sample was viewed under strain. Blue diffraction of PVG is observed in the central area where interference exposure occurred. (b) Rolled sample with a radius of curvature of 3.3 mm. (c) Folded sample.
Fig. 3
Fig. 3 Optical microscope images of PVG fabricated on PDMS under different strain. The size of each picture is 20 µm x 20 µm and stretching was along the arrow labeled in (a). The periodicity was measured to be: (a) Λx ≅667 nm (b) Λx ≅714 nm (c) Λx ≅741 nm (d) Λx ≅775 nm.
Fig. 4
Fig. 4 (a) Measured stretch-induced first-order diffraction spectra and efficiency. Curves from right to left correspond to the stretched length as indicated. (b) Measured central wavelength of diffraction spectra as a function of stretched length, starting from the initial state. (c) Image of experimental setup. The diffraction angle (θ) was marked with green dashed lines (see Visualization 1 for details). (d) Measured diffraction angle at λ = 532 nm under different stretched length, starting from the initial state.
Fig. 5
Fig. 5 (a) Derived horizontal periodicity from the measurements and the fitting line with Eq. (2). (b) Derived vertical periodicity from the measurements and the fitting line with Eq. (4).
Fig. 6
Fig. 6 (a) Measured horizontal periodicity of PVG as a function of stretch-release cycles, starting from the initial state. Inset: The film was fixed on the electrical holding stages at completely unstrained state. The stretch length was defined by the increased distance between the clamps. Then repeat the stretch-release cycles from unstrained state to 2 mm (see Visualization 2 for details). (b) Optical microscope images of PVG fabricated on PDMS without strain, Λx0 ≅667 nm. After 10 stretch-release cycles, Λx10 ≅690 nm. And after 20 stretch-release cycles, Λx20 ≅740 nm.
Fig. 7
Fig. 7 Image of sample without strain. The diffraction angle (θ) was marked with purple dashed lines. The central wavelength is 405 nm.
Fig. 8
Fig. 8 PVG films used as waveguide couplers in AR see-through near-eye system.
Fig. 9
Fig. 9 (a) The concept of combining PVG films with curved surface. (b) The image of lens attached with PVG film.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ X = λ LC sinθ ,
Λ X Λ X0 = (S+1) a ,
2 Λ y cos 2 ( θ 2 )= λ B .
Λ y Λ y0 = (S+1) b ,
Λ X Λ y Λ X0 Λ y0 = (S+1) ab =1.

Metrics