Abstract

We report high-speed photo detection at two-micron-wavelength achieved by a GeSn/Ge multiple-quantum-well (MQW) p-i-n photodiode, exhibiting a 3-dB bandwidth (f3-dB) above 10 GHz for the first time. The epitaxy of device layer stacks was performed on a standard (001)-oriented 300 mm Si substrate by using reduced pressure chemical vapor deposition (RPCVD). The results showed promise for large-scale manufacturing. To our knowledge, this is also the first photodiodes-on-Si with direct radio-frequency (RF) measurement to quantitatively confirm high-speed functionality with tens of GHz f3-dB at 2 µm, which is considered as a promising candidate for the next data communication window. This work illustrates the potential for using GeSn to extend the utility of Si photonics in 2 µm band integrated optical transceivers for communication applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon

Elizabeth H. Edwards, Leon Lever, Edward T. Fei, Theodore I. Kamins, Zoran Ikonic, James S. Harris, Robert W. Kelsall, and David A. B. Miller
Opt. Express 21(1) 867-876 (2013)

Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth

Yuan Dong, Wei Wang, Shengqiang Xu, Dian Lei, Xiao Gong, Xin Guo, Hong Wang, Shuh-Ying Lee, Wan-Khai Loke, Soon-Fatt Yoon, and Yee-Chia Yeo
Opt. Express 25(14) 15818-15827 (2017)

GeSn p-i-n photodetector for all telecommunication bands detection

Shaojian Su, Buwen Cheng, Chunlai Xue, Wei Wang, Quan Cao, Haiyun Xue, Weixuan Hu, Guangze Zhang, Yuhua Zuo, and Qiming Wang
Opt. Express 19(7) 6400-6405 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
    [Crossref] [PubMed]
  3. E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
    [Crossref]
  4. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, S. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in ECOC, 2014, pp. 5.20.
  5. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
    [Crossref]
  6. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
    [Crossref]
  7. N. Hattasan, A. Gassenq, L. Cerutti, J. Rodriguez, E. Tournié, and G. Roelkens, “GaSb-based integrated lasers and photodetectors on a Silicon-On-Insulator waveguide circuit for sensing applications in the shortwave infrared,” in IEEE PGC, 2012.
  8. R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M.-C. Amann, and G. Roelkens, “III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors,” Opt. Express 24(8), 8480–8490 (2016).
    [Crossref] [PubMed]
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  10. Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
    [Crossref]
  11. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
    [Crossref] [PubMed]
  12. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]
  13. K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
    [Crossref]
  14. W. Wang, Y. Dong, S.-Y. Lee, W.-K. Loke, D. Lei, S.-F. Yoon, G. Liang, X. Gong, and Y.-C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
    [Crossref] [PubMed]
  15. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
    [Crossref]
  16. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  17. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  18. R. People and J. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
    [Crossref]
  19. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  20. D. Stange, N. Von den Driesch, D. Rainko, T. Zabel, B. Marzban, Z. Ikonic, P. Zaumseil, G. Capellini, S. Manti, J. Witzens, H. Sigg, D. Grützmacher, and D. Buca, “Quantum confinement effects in GeSn/SiGeSn heterostructure lasers,” in IEEE IEDM, 2017, pp. 24.2. 1–24.2. 4.
  21. D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
    [Crossref]
  22. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
    [Crossref] [PubMed]
  23. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
    [Crossref] [PubMed]
  24. P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
    [Crossref]
  25. N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
    [Crossref]
  26. R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
    [Crossref] [PubMed]
  27. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
    [Crossref]
  28. R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
    [Crossref]
  29. Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
    [Crossref] [PubMed]
  30. I. A. Fischer, T. Wendav, L. Augel, S. Jitpakdeebodin, F. Oliveira, A. Benedetti, S. Stefanov, S. Chiussi, G. Capellini, K. Busch, and J. Schulze, “Growth and characterization of SiGeSn quantum well photodiodes,” Opt. Express 23(19), 25048–25057 (2015).
    [Crossref] [PubMed]
  31. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [Crossref] [PubMed]
  32. S.-W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge-SixGeySn1-x-y Quantum-Well Lasers,” ‎,” J. Quantum Electron 43(3), 249–256 (2007).
    [Crossref]
  33. Y.-H. Li, X. Gong, and S.-H. Wei, “Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends,” Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245206 (2006).
    [Crossref]
  34. T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
    [Crossref] [PubMed]
  35. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref] [PubMed]
  36. M. Gollhofer, M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, R. Korner, W. Zhang, E. Kasper, and J. Schulze, “High speed vertical GeSn photodiodes on Si,” in IEEE GFP, 2014, pp. 19–20.
  37. L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” Photonics J. 1(2), 69–79 (2009).
    [Crossref]
  38. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref] [PubMed]
  39. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
    [Crossref] [PubMed]
  40. H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
    [Crossref]
  41. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref] [PubMed]
  42. Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
    [Crossref]
  43. Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
    [Crossref] [PubMed]
  44. Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
    [Crossref] [PubMed]
  45. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
    [Crossref]
  46. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
    [Crossref]
  47. J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).
  48. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  49. W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
    [Crossref]
  50. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
    [Crossref]
  51. B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
    [Crossref] [PubMed]
  52. Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
    [Crossref]
  53. Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
    [Crossref]
  54. H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
    [Crossref]

2018 (5)

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
[Crossref] [PubMed]

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

2017 (8)

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
[Crossref] [PubMed]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

W. Wang, Y. Dong, S.-Y. Lee, W.-K. Loke, D. Lei, S.-F. Yoon, G. Liang, X. Gong, and Y.-C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

2016 (5)

R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M.-C. Amann, and G. Roelkens, “III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors,” Opt. Express 24(8), 8480–8490 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

2015 (3)

2014 (6)

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

2013 (3)

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (4)

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

2011 (4)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

2010 (1)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

2009 (2)

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” Photonics J. 1(2), 69–79 (2009).
[Crossref]

2008 (1)

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

2007 (1)

S.-W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge-SixGeySn1-x-y Quantum-Well Lasers,” ‎,” J. Quantum Electron 43(3), 249–256 (2007).
[Crossref]

2006 (1)

Y.-H. Li, X. Gong, and S.-H. Wei, “Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends,” Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245206 (2006).
[Crossref]

2005 (2)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

2002 (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

1993 (1)

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

1985 (1)

R. People and J. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Alam, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Alam, S.-U.

Amann, M.-C.

Armand-Pilon, F.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Assanto, G.

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” Photonics J. 1(2), 69–79 (2009).
[Crossref]

Augel, L.

Baets, R.

Bartolo-Perez, C.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Bean, J.

R. People and J. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

Bechler, S.

Beeler, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Benedetti, A.

Bigo, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Birks, T. A.

Boehm, G.

Bournel, A.

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

Bowers, J. E.

Brendel, C. E.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Brudevoll, T.

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

Buca, D.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Busch, K.

Cansizoglu, H.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Cao, Q.

Cao, W.

Capellini, G.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

I. A. Fischer, T. Wendav, L. Augel, S. Jitpakdeebodin, F. Oliveira, A. Benedetti, S. Stefanov, S. Chiussi, G. Capellini, K. Busch, and J. Schulze, “Growth and characterization of SiGeSn quantum well photodiodes,” Opt. Express 23(19), 25048–25057 (2015).
[Crossref] [PubMed]

Cardona, M.

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

Chang, G.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Chang, G.-E.

Chang, S.-W.

S.-W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge-SixGeySn1-x-y Quantum-Well Lasers,” ‎,” J. Quantum Electron 43(3), 249–256 (2007).
[Crossref]

Chao, R.

Chen, R.

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, H.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Cheng, H. H.

Chigusa, Y.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Chiussi, S.

Christensen, N. E.

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

Chuang, S. L.

S.-W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge-SixGeySn1-x-y Quantum-Well Lasers,” ‎,” J. Quantum Electron 43(3), 249–256 (2007).
[Crossref]

Chung, H.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Citrin, D. S.

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

Colace, L.

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” Photonics J. 1(2), 69–79 (2009).
[Crossref]

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Corzine, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Couny, F.

D’Costa, V. R.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Denneulin, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Dentai, A.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Desurvire, E.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Devine, E. P.

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Dong, Y.

Du, W.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Elrefaie, A. F.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Evans, P.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Fan, J.

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

Fan, W.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Farr, L.

Fenrich, C. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fischer, I. A.

Gao, Y.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Gardes, F.

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Ghandiparsi, S.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Gollhofer, M.

Gong, X.

Gossard, A. C.

Grützmacher, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Guo, X.

Gupta, S.

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Hagan, D.

Han, G.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Harris, J. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Hartmann, J. M.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Hartmann, J.-M.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Hu, E. L.

Hu, W.

Hu, X.

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

Huang, B.-J.

Huang, D.

Huang, Y.-C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Huang, Y.-H.

Huo, Y.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

Ikonic, Z.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Islam, M. S.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Jiang, Z.

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

Jitpakdeebodin, S.

Joyner, C.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Jung, D.

Kakui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Kamins, T. I.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Kaschel, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kato, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kaya, A.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Kazmierski, C.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kennedy, M.

Kennedy, M. J.

Kim, Y.

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Kish, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kittler, M.

Knight, J. C.

Knights, A.

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Koerner, R.

Körner, R.

Kostecki, K.

Kouvetakis, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Lau, K. M.

Lazzari, J.-L.

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

Lee, S. Y.

Lee, S.-Y.

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Lei, D.

Lelarge, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Li, B.

Li, H.

Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
[Crossref] [PubMed]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Li, K.

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Li, Y.-H.

Y.-H. Li, X. Gong, and S.-H. Wei, “Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends,” Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245206 (2006).
[Crossref]

Liang, D.

Liang, G.

Lim, S. L.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Lin, A. C.

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Lin, J.-H.

Lin, Y.

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

Littlejohns, C. G.

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liu, S.

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Loh, W.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Loke, W. K.

Loke, W.-K.

Lu Low, K.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Malik, A.

Mamtaz, H. H.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Mangan, B. J.

Mantl, S.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Marcadet, X.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Margetis, J.

Marzban, B.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Mashanov, V.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Mashanov, V. I.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Mashanovich, G. Z.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Mason, M. W.

Mathews, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Matsui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Mayet, A. S.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Menéndez, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Menéndéz, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Miller, D. A.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Moontragoon, P.

P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Morea, M.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Muneeb, M.

Muthiah, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Nagarajan, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Nagayama, K.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Nakatsuka, O.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Nakazawa, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Naseem, H. A.

Nedeljkovic, M.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Norman, J.

Oehme, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Ogawa, M.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Oliveira, F.

Osipowicz, T.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Payne, D.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Peng, Y.-H.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

People, R.

R. People and J. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

Petrovich, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Pham, T.

Pleumeekers, J.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Polat, K. G.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Poletti, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Ponizovskaya Devine, E.

Povstugar, I.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Rainko, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Reed, G. T.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Roberts, P. J.

Roelkens, G.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Roucka, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Rouifed, M. S.

Rudy, C. W.

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

Sabert, H.

Said, M.

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

Saitoh, T.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Sakai, A.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Sanchez, E.

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Saraswat, K. C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Scavennec, A.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schneider, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Schröder, T.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Schulze, J.

I. A. Fischer, T. Wendav, L. Augel, S. Jitpakdeebodin, F. Oliveira, A. Benedetti, S. Stefanov, S. Chiussi, G. Capellini, K. Busch, and J. Schulze, “Growth and characterization of SiGeSn quantum well photodiodes,” Opt. Express 23(19), 25048–25057 (2015).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schwartz, B.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sfina, N.

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

Shang, C.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Shi, J.-W.

Shimura, Y.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sigg, H.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Soref, R.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

Soref, R. A.

Sprengel, S.

St. J. Russell, P.

Stange, D.

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Stefanov, S.

Su, S.

Suh, J.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Sun, G.

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Takeuchi, S.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Thomson, D. J.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Tok, E. S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

Tolle, J.

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Tomlinson, A.

Torres, A.

Tran, H.

Tseng, H.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Ulbricht, K.

Vajandar, S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

von den Driesch, N.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Wan, Y.

Wang, H.

Wang, J.

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, R.

Wang, S.-Y.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Wang, W.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

W. Wang, Y. Dong, S.-Y. Lee, W.-K. Loke, D. Lei, S.-F. Yoon, G. Liang, X. Gong, and Y.-C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Wei, S.-H.

Y.-H. Li, X. Gong, and S.-H. Wei, “Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends,” Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245206 (2006).
[Crossref]

Welch, D.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Wendav, T.

Weng, C.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Widmann, D.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Williams, D. P.

Witzens, J.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Xin, G.

Xu, S.

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yahyaoui, N.

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

Yamada, T.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm,” Photon. Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yang, Y.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Ye, K.

Yeo, Y.-C.

Yoon, S.-F.

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yu, S.-Q.

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Zabel, T.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Zaima, S.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Zang, K.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Zaumseil, P.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, G.

Zhang, W.

Zhang, X.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

Zhang, Z.

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhou, Q.

Ziari, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Zuo, Y.

ACS Photonics (2)

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers,” ACS Photonics 5(11), 4628–4636 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength,” ACS Photonics 4(8), 2053–2060 (2017).
[Crossref]

Adv. Sci. (Weinh.) (1)

N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, J. M. Hartmann, H. Sigg, S. Mantl, D. Grützmacher, and D. Buca, “Advanced GeSn/SiGeSn Group IV Heterostructure Lasers,” Adv. Sci. (Weinh.) 5(6), 1700955 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (10)

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Y. Lin, Z. Jiang, X. Hu, X. Zhang, and J. Fan, “The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst,” Appl. Phys. Lett. 100(10), 102105 (2012).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

R. People and J. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

C. R. Phys. (1)

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

ECS Trans. (1)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Electron. Lett. (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

J. Appl. Phys. (4)

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

P. Moontragoon, R. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys. 112(7), 073106 (2012).
[Crossref]

N. Yahyaoui, N. Sfina, J.-L. Lazzari, A. Bournel, and M. Said, “Wave-function engineering and absorption spectra in Si 0.16 Ge 0.84 /Ge 0.94 Sn 0.06 /Si 0.16 Ge 0.84 strained on relaxed Si 0.10 Ge 0.90 type I quantum well,” J. Appl. Phys. 115(3), 033109 (2014).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

J. Cryst. Growth (1)

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

J. Quantum Electron (1)

S.-W. Chang and S. L. Chuang, “Theory of Optical Gain of Ge-SixGeySn1-x-y Quantum-Well Lasers,” ‎,” J. Quantum Electron 43(3), 249–256 (2007).
[Crossref]

Nano Lett. (1)

R. Chen, S. Gupta, Y.-C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, Y. Kim, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics,” Nano Lett. 14(1), 37–43 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Nature (1)

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[Crossref] [PubMed]

Opt. Express (11)

I. A. Fischer, T. Wendav, L. Augel, S. Jitpakdeebodin, F. Oliveira, A. Benedetti, S. Stefanov, S. Chiussi, G. Capellini, K. Busch, and J. Schulze, “Growth and characterization of SiGeSn quantum well photodiodes,” Opt. Express 23(19), 25048–25057 (2015).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
[Crossref] [PubMed]

W. Wang, Y. Dong, S.-Y. Lee, W.-K. Loke, D. Lei, S.-F. Yoon, G. Liang, X. Gong, and Y.-C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M.-C. Amann, and G. Roelkens, “III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors,” Opt. Express 24(8), 8480–8490 (2016).
[Crossref] [PubMed]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (2)

Photon. Res. (1)

Photonics J. (2)

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” Photonics J. 1(2), 69–79 (2009).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (2)

T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, “Electronic structure of α -Sn and its dependence on hydrostatic strain,” Phys. Rev. B Condens. Matter 48(12), 8629–8635 (1993).
[Crossref] [PubMed]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Y.-H. Li, X. Gong, and S.-H. Wei, “Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends,” Phys. Rev. B Condens. Matter Mater. Phys. 73(24), 245206 (2006).
[Crossref]

Other (4)

M. Gollhofer, M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, R. Korner, W. Zhang, E. Kasper, and J. Schulze, “High speed vertical GeSn photodiodes on Si,” in IEEE GFP, 2014, pp. 19–20.

N. Hattasan, A. Gassenq, L. Cerutti, J. Rodriguez, E. Tournié, and G. Roelkens, “GaSb-based integrated lasers and photodetectors on a Silicon-On-Insulator waveguide circuit for sensing applications in the shortwave infrared,” in IEEE PGC, 2012.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, S. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in ECOC, 2014, pp. 5.20.

D. Stange, N. Von den Driesch, D. Rainko, T. Zabel, B. Marzban, Z. Ikonic, P. Zaumseil, G. Capellini, S. Manti, J. Witzens, H. Sigg, D. Grützmacher, and D. Buca, “Quantum confinement effects in GeSn/SiGeSn heterostructure lasers,” in IEEE IEDM, 2017, pp. 24.2. 1–24.2. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Three-dimensional (3D) schematic of the GeSn/Ge MQW photodiode. GeSn/Ge MQW was inserted in the intrinsic Ge region as the active absorption layer as highlighted in purple color.
Fig. 2
Fig. 2 Calculated critical thickness of bulk GeSn and GeSn/Ge MQW grown on Ge virtual substrate using People-Bean model. The thickness of the GeSn/Ge MQW in this work is also indicated as reference.
Fig. 3
Fig. 3 Calculated band diagram for the GeSn well sandwiched by Ge barriers. Ground state energy was solved for Γ-valley electron and heavy hole as indicated with dashed lines. The wavefunctions for first quantized energy level of electrons and holes are also shown for reference.
Fig. 4
Fig. 4 (a) Photograph image of the as-grown GeSn/Ge MQW on 300 mm Si substrate. High quality film with mirror-like surface was achieved across the whole wafer. (b) AFM image of the as-grown sample reveals a smooth surface with root-mean-square roughness of 0.636 nm for a scanning area of 10 × 10 µm2.
Fig. 5
Fig. 5 (a) Cross-sectional TEM image of the entire epitaxial layer stack. (b) High resolution TEM clearly shows the quantum wells with sharp interface between GeSn and Ge. (c) Zoom-in view of the XTEM at the Ge/Si interface, where the defects are effectively confined.
Fig. 6
Fig. 6 (a) High resolution x-ray diffraction rocking curve of as-grown GeSn/Ge MQW sample at (004) orientation. MQW structure was revealed from the satellite peaks at lower 2 theta angles. (b) (115) reciprocal space mapping (RSM) of the as-grown sample. The GeSn/Ge MQW is fully strained to the strain-relaxed Ge buffer as indicated from the same in-plane lattice.
Fig. 7
Fig. 7 (a) Cross-sectional SEM image of the GeSn/Ge MQW after first mesa patterning and dry etch. (b) Tilted-view SEM image of the GeSn/Ge MQW photodiode after forming the second mesa. (c) Top-view SEM image of one completed photodiode with standard GSG electrode.
Fig. 8
Fig. 8 Dark current-bias voltage (Idark-Vbias) curves for the fabricated photodiodes with various mesa diameters (D).
Fig. 9
Fig. 9 (a) Dark current density Jdark versus 1/D of the photodiodes at a reverse bias of 1 V. Bulk leakage density Jbulk and surface leakage density Jsurf can be extracted from a linear fit to the data. (b) Surface and bulk leakage percentage of the GeSn/Ge MQW photodiodes.
Fig. 10
Fig. 10 Benchmarking of the dark current density Jdark for all GeSn on Si p-i-n photodiodes at reverse bias Vre of 1 V. A Jdark among the lowest reported values was achieved for a relative high Sn concentration of 8%.
Fig. 11
Fig. 11 (a) Current-bias voltage (I-Vbias) characteristics of the GeSn/Ge MQW photodiode at illumination wavelength of 1550 nm with incident power (Pin) of 0, 2, and 5 decibel milliwatts or dBm, respectively. (b) I-Vbias characteristics of the photodiode at illumination wavelength of 1742, 1877, and 2000 nm with a fixed incident power of 3.6 dBm, respectively. The photodiode under test has a mesa diameter (D) of 40 µm for facilitating the fiber alignment with the photodiode surface window.
Fig. 12
Fig. 12 Optical responsivity as a function of wavelength for the GeSn/Ge MQW photodiode ranging from 1550 to 2000 nm at a reverse bias (Vre) of 1 V. A detection cut-off beyond 2 µm can be clearly observed.
Fig. 13
Fig. 13 Schematic of the experimental optical setup for the RF measurement of the GeSn/Ge MQW photodiode at two-micron-wavelength. The red and black lines indicate the optical and electrical connections, respectively. Inset shows the top-view microscopy image (with focus on sample surface) of the photodiode device under test (DUT), which has a mesa diameter of 20 µm.
Fig. 14
Fig. 14 Normalized small signal frequency response of the 20-m-diameter GeSn/Ge MQW photodiode at two-micron-wavelength. The bias voltage (Vbias) ranges from 0 to −7 V. At reverse bias larger than 5 V, the photodiode exhibits a 3-dB bandwidth beyond 10 GHz.

Tables (1)

Tables Icon

Table 1 Parameters of Ge and α-Sn for Electronic Band Structure Calculation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

h c ( 1v 1+v )( 1 16π 2 )[ b 2 a GeSn ][ ( 1 f 2 )ln( h c b ) ],
f= a GeSn a Ge a Ge .
x effective = t well t well + t barrier x,
E g,η (G e 1x S n x ) =(1x) E g,η (Ge) +x E g,η (Sn) b η GeSn x(1x),
Δ E HH = a v (2 ε + ε )+ b v ( ε ε ),
Δ E LH = a v (2 ε + ε ) 1 2 b v ( ε ε ) 1 2 Δ 0 + 1 2 Δ 0 2 2 Δ 0 b v ( ε ε )+9 b v 2 ( ε ε ) 2 ,
Δ E c η = a c η (2 ε + ε ),
ε = a a bulk a bulk ,
ε =2 C 12 C 11 ε ,
2 2 m * (z) 2 ϕ n z 2 +V(z) ϕ n = E n ϕ n ,
i s = 2q( I ph + I d )B ,
J dark = J bulk + 4 J surf D ,

Metrics