Abstract

Q-switching operation based on stimulated Brillouin scattering (SBS) has been developed for decades due to its inexpensive configuration, high pulse energy output, and the potential to be free from wavelength and material limitations. However, unstable and uncontrollable pulse output affected by SBS’s stochastic nature hinders its development. In this work, we demonstrated a unique robust SBS-based Q-switched all-fiber laser. Firstly, a numerical model is developed and a general analysis about the robust Q-switching mechanism is presented. Simulation results show that the spectrum modulation effect such as FP interference is efficient for system to realize steady and controllable output. Secondly, we incorporated a Fabry-Perot (FP) interferometer made of two un-contact end faces of fiber connectors into a SBS-based Q-switched system and demonstrated passively robust Q-switching with simpler and cheaper configuration than most reported ones. Under 600 mW pump power, the SNR was measured to be as high as 62.96 dB, which is the highest SNR obtained from SBS-based Q-switched lasers. To our best knowledge, this is the first demonstration of robust SBS-based Q-switching without any external measures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-peak-power subnanosecond passively Q-switched ytterbium-doped fiber laser

Lei Pan, Ilya Utkin, Ruijun Lan, Yogesh Godwal, and Robert Fedosejevs
Opt. Lett. 35(7) 895-897 (2010)

Passively Q-switched Yb-doped all-fiber ring laser based on SBS feedback

Zhongwei Xu, Xing Luo, Luyun Yang, Jinggang Peng, Haiqing Li, and Jinyan Li
Appl. Opt. 56(17) 4971-4974 (2017)

Supercontinuum self-Q-switched ytterbium fiber laser

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev
Opt. Lett. 22(5) 298-300 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
    [Crossref]
  2. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
    [Crossref] [PubMed]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  4. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  5. H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
    [Crossref] [PubMed]
  6. Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
    [Crossref]
  7. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5(12), 516–518 (1980).
    [Crossref] [PubMed]
  8. X. Long, W. Zou, and J. Chen, “All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering,” Opt. Express 24(5), 5162–5171 (2016).
    [Crossref] [PubMed]
  9. C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
    [Crossref]
  10. A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
    [Crossref]
  11. C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
    [Crossref] [PubMed]
  12. G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
    [Crossref] [PubMed]
  13. I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
    [Crossref] [PubMed]
  14. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  15. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref] [PubMed]
  16. D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
    [Crossref] [PubMed]
  17. L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
    [Crossref]
  18. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
    [Crossref] [PubMed]
  19. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  20. B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
    [Crossref]
  21. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
    [Crossref]
  22. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  23. Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5(1), 9338 (2015).
    [Crossref] [PubMed]
  24. Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
    [Crossref] [PubMed]
  25. P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
    [Crossref] [PubMed]
  26. A. A. Fotiadi and P. Mégret, “Self-Q-switched Er-Brillouin fiber source with extra-cavity generation of a Raman supercontinuum in a dispersion-shifted fiber,” Opt. Lett. 31(11), 1621–1623 (2006).
    [Crossref] [PubMed]
  27. S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
    [Crossref]
  28. A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29(10), 1078–1080 (2004).
    [Crossref] [PubMed]
  29. X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
    [Crossref]
  30. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
    [Crossref] [PubMed]
  31. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16(6), 932–951 (1999).
    [Crossref]
  32. A. A. Fotiadi, G. Ravet, P. Mégret, and M. Blondel, “Characterization of all-fiber Rayleigh-SBS ring mirror,” in Proc. 2003 Symposium of the IEEE/LEOS Benelux Chapter, 2003), 147–150.
  33. A. A. Fotiadi, O. Deparis, R. V. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low-pump-power,” in Laser Optics 2000: Semiconductor Lasers and Optical Communication, (International Society for Optics and Photonics, 2001), 125–135.
  34. X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
    [Crossref]
  35. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998).
    [Crossref] [PubMed]
  36. Z. Pan, L. Meng, Q. Ye, H. Cai, Z. Fang, and R. Qu, “Repetition rate stabilization of the SBS Q-switched fiber laser by external injection,” Opt. Express 17(5), 3124–3129 (2009).
    [Crossref] [PubMed]
  37. L. Pan, “Experiment and modeling of passively Q-switched ytterbium doped double-clad fiber lasers,” (University of Alberta, 2010).
  38. R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  39. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  40. C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
    [Crossref]

2018 (1)

2017 (2)

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

2016 (8)

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

X. Long, W. Zou, and J. Chen, “All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering,” Opt. Express 24(5), 5162–5171 (2016).
[Crossref] [PubMed]

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref] [PubMed]

L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
[Crossref]

2015 (6)

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
[Crossref] [PubMed]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5(1), 9338 (2015).
[Crossref] [PubMed]

2014 (2)

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

2013 (2)

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

2010 (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

2009 (1)

2008 (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

2007 (2)

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

2006 (2)

A. A. Fotiadi and P. Mégret, “Self-Q-switched Er-Brillouin fiber source with extra-cavity generation of a Raman supercontinuum in a dispersion-shifted fiber,” Opt. Lett. 31(11), 1621–1623 (2006).
[Crossref] [PubMed]

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

2005 (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

2004 (1)

1999 (1)

1998 (1)

1997 (1)

1994 (1)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

1990 (1)

R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1980 (1)

Amer, M. S.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Andreev, A.

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

Aryanfar, I.

Bahl, G.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Bahloul, D.

Bai, Z.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Ballmann, C. W.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Ben-Ezra, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Bilenca, A.

Blondel, M.

Bongrand, I.

Botineau, J.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Cai, H.

Casas-Bedoya, A.

Chen, J.

Chen, W.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Chen, Y.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Chen, Z. J.

Chernikov, S. V.

Cheval, G.

Choi, D.-Y.

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
[Crossref]

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Choudhary, A.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Cui, C.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Dai, N.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Dane, C. B.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Dong, C.-H.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Dong, X.

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Eggleton, B. J.

Fang, Z.

Fotiadi, A. A.

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gapontsev, V. P.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Godin, T.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Gong, M.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Grudinin, A. B.

Guo, G.-C.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Hackel, L. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Han, B.

Han, K.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Hanzard, P.-H.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Hideur, A.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Hon, D. T.

Hu, W.

Huang, L.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Jaouën, Y.

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kellou, A.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Kim, J.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Kling, S.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Kuzyk, M. C.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Leblond, H.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Li, C.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Li, E.

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Li, H.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Li, J.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Li, S.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Li, X.

Lin, W.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Liptak, D. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Liu, Q.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Liu, R.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Liu, Z.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Long, X.

Lu, Z.

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Luo, X.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Luther-Davies, B.

Ma, R.

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Madden, S.

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Madden, S. J.

Maguire, J. F.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Mallek, D.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Mamhoud, A.

Marcos, S.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

Marpaung, D.

Mégret, P.

Meng, L.

Meng, Z.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Minelly, J. D.

Montes, C.

Morrison, B.

Morvan, M.

Narum, P.

R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Neuman, W. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Pagani, M.

Pan, Z.

Pant, R.

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
[Crossref]

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Peng, J.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Picholle, E.

Picozzi, A.

Pineda, R.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Porta, J.

Qiao, T.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Qu, R.

Quijano, E.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

Rao, Y.

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Reber, J. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Remer, I.

Riconda, C.

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

Rzaewski, K.

R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Sanchez, F.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Schneider, T.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Scully, M. O.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Shahnia, S.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Shen, Z.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Shi, M.

Stern, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Talbi, M.

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Tang, Y.

Taylor, J. R.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Thompson, J. V.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Tikhonchuk, V.

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

Traverso, A. J.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Tur, M.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Vu, K.

Wang, H.

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Wang, Q. J.

Wang, S.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Wang, Y.

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Weber, S.

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

Wei, W.

Xu, J.

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5(1), 9338 (2015).
[Crossref] [PubMed]

Xu, Z.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Yakovlev, V. V.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Yan, P.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Yang, C.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Yang, L.

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Yang, Z.

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Ye, C.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Ye, Q.

Yi, L.

Yuan, H.

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Zadok, A.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Zeng, X.

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Zhang, R.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Zhang, W.

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

Zhang, Y.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Zheng, Z.

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

Zhong, K.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Zhu, Y.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Zou, C.-L.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Zou, W.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Appl. Phys. B (1)

X. Luo, Z. Xu, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Simple open-cavity pulsed Brillouin fiber laser with broadband supercontinuum generation,” Appl. Phys. B 123(10), 259 (2017).
[Crossref]

Appl. Phys. Express (1)

S. Wang, W. Lin, W. Chen, C. Li, C. Yang, T. Qiao, and Z. Yang, “Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser,” Appl. Phys. Express 9(3), 032701 (2016).
[Crossref]

Appl. Sci. (Basel) (1)

Z. Bai, Y. Wang, Z. Lu, H. Yuan, Z. Zheng, S. Li, Y. Chen, Z. Liu, C. Cui, H. Wang, and R. Liu, “High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression,” Appl. Sci. (Basel) 6(1), 29 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

X. Zeng, W. Zhang, R. Ma, Z. Yang, X. Zeng, X. Dong, and Y. Rao, “Regulation of a pulsed random fiber laser in the Q-switched regime,” Laser Phys. Lett. 13(11), 115105 (2016).
[Crossref]

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Nat. Commun. (1)

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Nat. Phys. (1)

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Opt. Commun. (1)

B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Opt. Commun. 313, 85–89 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (10)

D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5(12), 516–518 (1980).
[Crossref] [PubMed]

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
[Crossref] [PubMed]

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref] [PubMed]

Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998).
[Crossref] [PubMed]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
[Crossref] [PubMed]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref] [PubMed]

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29(10), 1078–1080 (2004).
[Crossref] [PubMed]

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
[Crossref] [PubMed]

A. A. Fotiadi and P. Mégret, “Self-Q-switched Er-Brillouin fiber source with extra-cavity generation of a Raman supercontinuum in a dispersion-shifted fiber,” Opt. Lett. 31(11), 1621–1623 (2006).
[Crossref] [PubMed]

Optica (1)

PHOTONICS RES (1)

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” PHOTONICS RES 2(4), B18–B25 (2014).
[Crossref]

Phys. Plasmas (1)

A. Andreev, C. Riconda, V. Tikhonchuk, and S. Weber, “Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime,” Phys. Plasmas 13(5), 053110 (2006).
[Crossref]

Phys. Rev. A (1)

R. W. Boyd, K. Rząewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum. 78(1), 016106 (2007).
[Crossref] [PubMed]

Sci. Rep. (3)

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref] [PubMed]

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5(1), 9338 (2015).
[Crossref] [PubMed]

P.-H. Hanzard, M. Talbi, D. Mallek, A. Kellou, H. Leblond, F. Sanchez, T. Godin, and A. Hideur, “Brillouin scattering-induced rogue waves in self-pulsing fiber lasers,” Sci. Rep. 7(1), 45868 (2017).
[Crossref] [PubMed]

Other (3)

A. A. Fotiadi, G. Ravet, P. Mégret, and M. Blondel, “Characterization of all-fiber Rayleigh-SBS ring mirror,” in Proc. 2003 Symposium of the IEEE/LEOS Benelux Chapter, 2003), 147–150.

A. A. Fotiadi, O. Deparis, R. V. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low-pump-power,” in Laser Optics 2000: Semiconductor Lasers and Optical Communication, (International Society for Optics and Photonics, 2001), 125–135.

L. Pan, “Experiment and modeling of passively Q-switched ytterbium doped double-clad fiber lasers,” (University of Alberta, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The diagrammatic sketch of the simulations and the energy transfer between different orders of the Stokes waves and the acoustic waves. The left end (painted in purple) represents spectrum modulation device in this paper, which indicates fiber ring resonator in conventional cases.
Fig. 2
Fig. 2 (a) The pulse sequence in a 2 ms span of the conventional boundary condition and insert: detail of a typical pulse. (b) The pulse sequence of the saddle-shape boundary condition. (c) The difference map of pulse-pulse interval and peak power of two simulated pulse sequence shown by olive and orange dots. Insert graph shows the enlarged view of the difference map of saddle-shape boundary condition.
Fig. 3
Fig. 3 (a) The evolution of the fundamental lasing light. (b)-(f) The evolution of the stimulated Stokes waves of the order 1-5. A time duration of 280 µs in vertical direction and a cavity length of 29 m in lateral direction is displayed respectively. Different parts of the cavity are separated by gray dashed lines.
Fig. 4
Fig. 4 The experimental setup. The pump source has a maximum output of 600mW, 20m SMF is used to lower down the SBS threshold. Insert: The detailed composition of the FP interferometer. Common commercial and pre-cleaned FC/PC connectors are used in the experiments.
Fig. 5
Fig. 5 (a) Measured output pulse trains under different pump power. Right column: enlarged view of single pulse. (b) radio frequency spectrum under 600 mW.
Fig. 6
Fig. 6 (a) Pulse duration and repetition rate versus pump power. (b) Average output power and single pulse energy variation with pump power.
Fig. 7
Fig. 7 The experiment setup for spectrum investigation. Insert: The spectrum at 20% output port and spectrum at FP output port, the abscissa is wavelength(nm) and the ordinate is intensity(dB).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n c A 0 ± t ± A 0 ± z = g SBS 2 A eff ( λ 0 ) ( ρ 0 ± A 1 )+ Γ 0 1 2 ( σ e ( λ 0 ) N 2 σ a ( λ 0 ) N 1 ) A 0 ± 1 2 α( λ 0 ) A 0 ± +2 Γ 0 σ e ( λ 0 ) N 2 h c 2 Δλ λ 0 3 | A 0 ± |
n c A k ± t ± A k ± z = g SBS 2 A eff ( λ k ) ( ρ k1 * A k1 ρ k ± A k+1 )+ Γ k 1 2 ( σ e ( λ k ) N 2 σ a ( λ k ) N 1 ) A k ± 1 2 α( λ k ) A k ± + η k ± A k
T 2 ρ k ± t + ρ k ± = A k ± A k+1 * + f k ± (z,t)
n c P p t + P p z = Γ p P p ( σ e ( λ p ) N 2 σ a ( λ p ) N 1 )a( λ p ) P p
d N 2 dt = Γ p λ p P p hc A eff ( λ p ) ( σ a ( λ p ) N 1 σ e ( λ p ) N 2 )+ i=1 k Γ i λ i hc A eff ( λ i ) ( A i + A i + * + A i A i * )( σ a ( λ i ) N 1 σ e ( λ i ) N 2 ) N 2 τ 2

Metrics