Abstract

An array of micro spectrometers for parallel spectral sensing is designed, set up and tested. It utilizes a planar prism grating combination to obtain an almost linear optical system of 6 mm length only. Arranging such micro spectrometers in an array configuration yields 2’000 spectrometers when utilizing a common 4/3” CCD image sensor well adapted to e.g. microscopic image dimensions. The application in microscopic imaging in the 450-900 nm spectral range is demonstrated as proof of concept, which can be adapted to massively parallel sensing in the frame of integrated sensor concepts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of microoptical freeform arrays on wafer level for imaging applications

Jens Dunkel, Frank Wippermann, Andreas Reimann, Andreas Brückner, and Andreas Bräuer
Opt. Express 23(25) 31915-31925 (2015)

Chromatic confocal matrix sensor with actuated pinhole arrays

Matthias Hillenbrand, Robert Weiss, Csaba Endrödy, Adrian Grewe, Martin Hoffmann, and Stefan Sinzinger
Appl. Opt. 54(15) 4927-4936 (2015)

Volume hologram replication system for spectrum-splitting photovoltaic applications

Benjamin D. Chrysler and Raymond K. Kostuk
Appl. Opt. 57(30) 8887-8893 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
    [Crossref]
  2. S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
    [Crossref]
  3. B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
    [Crossref]
  4. H. Min and B.-K. Cho, “Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review,” J. Biosystems Eng. 40(1), 67–77 (2015).
    [Crossref]
  5. S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
    [Crossref] [PubMed]
  6. G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
    [Crossref] [PubMed]
  7. D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
    [Crossref] [PubMed]
  8. S. Ayas, G. Bakan, E. Ozgur, K. Celebi, G. Torunoglu, and A. Dana, “Colorimetric detection of ultrathin dielectrics on strong interference coatings,” Opt. Lett. 43(6), 1379–1382 (2018).
    [Crossref] [PubMed]
  9. M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
    [Crossref] [PubMed]
  10. M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
    [Crossref]
  11. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
    [Crossref] [PubMed]
  12. T. C. Wilkes, A. J. S. McGonigle, J. R. Willmott, T. D. Pering, and J. M. Cook, “Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy,” Opt. Lett. 42(21), 4323–4326 (2017).
    [Crossref] [PubMed]
  13. A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
    [Crossref] [PubMed]
  14. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  15. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4(10), 1209–1213 (2017).
    [Crossref]
  16. P. Varytis, D.-N. Huynh, W. Hartmann, W. Pernice, and K. Busch, “Design study of random spectrometers for applications at optical frequencies,” Opt. Lett. 43(13), 3180–3183 (2018).
    [Crossref] [PubMed]
  17. S. A. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47(28), F71–F76 (2008).
    [Crossref] [PubMed]
  18. B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
    [Crossref]
  19. I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
    [Crossref]
  20. M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).
  21. F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
    [Crossref] [PubMed]
  22. Y. Xu, J. Li, C. Bai, H. Yuan, and J. Liu, “Ultra-compact Fourier transform imaging spectrometer using a focal plane birefringent interferometer,” Opt. Lett. 43(17), 4081–4084 (2018).
    [Crossref] [PubMed]
  23. F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A. Johansen, “Do it yourself hyperspectral imager for handheld to airborne operations,” Opt. Express 26(5), 6021–6035 (2018).
    [Crossref] [PubMed]
  24. E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).
  25. M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
    [Crossref] [PubMed]
  26. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
    [Crossref] [PubMed]
  27. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [Crossref] [PubMed]
  28. S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
    [Crossref]
  29. P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
    [Crossref]
  30. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
    [Crossref] [PubMed]
  31. T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
    [Crossref] [PubMed]
  32. J. Liu, J. Chen, J. Liu, S. Feng, X. Li, and J. Cui, “Optical design of a prism-grating-based lenslet array integral field spectrometer,” Opt. Express 26(15), 19456–19469 (2018).
    [Crossref] [PubMed]
  33. U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
    [Crossref]
  34. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  35. H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
    [Crossref]
  36. S. Asraf, T. Yeminy, D. Sadot, and Z. Zalevsky, “Proof of concept for ultrahigh resolution photonic spectral processor,” Opt. Express 26(19), 25013–25019 (2018).
    [Crossref] [PubMed]

2018 (8)

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A. Johansen, “Do it yourself hyperspectral imager for handheld to airborne operations,” Opt. Express 26(5), 6021–6035 (2018).
[Crossref] [PubMed]

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, G. Torunoglu, and A. Dana, “Colorimetric detection of ultrathin dielectrics on strong interference coatings,” Opt. Lett. 43(6), 1379–1382 (2018).
[Crossref] [PubMed]

P. Varytis, D.-N. Huynh, W. Hartmann, W. Pernice, and K. Busch, “Design study of random spectrometers for applications at optical frequencies,” Opt. Lett. 43(13), 3180–3183 (2018).
[Crossref] [PubMed]

J. Liu, J. Chen, J. Liu, S. Feng, X. Li, and J. Cui, “Optical design of a prism-grating-based lenslet array integral field spectrometer,” Opt. Express 26(15), 19456–19469 (2018).
[Crossref] [PubMed]

Y. Xu, J. Li, C. Bai, H. Yuan, and J. Liu, “Ultra-compact Fourier transform imaging spectrometer using a focal plane birefringent interferometer,” Opt. Lett. 43(17), 4081–4084 (2018).
[Crossref] [PubMed]

S. Asraf, T. Yeminy, D. Sadot, and Z. Zalevsky, “Proof of concept for ultrahigh resolution photonic spectral processor,” Opt. Express 26(19), 25013–25019 (2018).
[Crossref] [PubMed]

2017 (4)

S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4(10), 1209–1213 (2017).
[Crossref]

T. C. Wilkes, A. J. S. McGonigle, J. R. Willmott, T. D. Pering, and J. M. Cook, “Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy,” Opt. Lett. 42(21), 4323–4326 (2017).
[Crossref] [PubMed]

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

2016 (5)

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

F. Han, W. Wang, X. Zhang, and H. Xie, “Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror,” Opt. Express 24(20), 22650–22660 (2016).
[Crossref] [PubMed]

2015 (2)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

H. Min and B.-K. Cho, “Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review,” J. Biosystems Eng. 40(1), 67–77 (2015).
[Crossref]

2014 (2)

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

2013 (4)

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

2012 (1)

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

2010 (2)

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref] [PubMed]

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

2008 (1)

2007 (2)

A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
[Crossref] [PubMed]

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

2005 (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

2002 (1)

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

2001 (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

2000 (1)

S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
[Crossref]

1988 (1)

Abdo, M.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

Asaari, M. S. M.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Asraf, S.

Ayas, S.

Badilita, V.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

Bai, C.

Bakan, G.

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Bearman, G.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Benkenstein, T.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Bergström, D.

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Berlich, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Bichra, M.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

Bohnert, P.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Bräuer, A.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref] [PubMed]

A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
[Crossref] [PubMed]

Brückner, A.

Brüning, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Brunner, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Busch, K.

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Celebi, K.

Chen, J.

Cho, B.-K.

H. Min and B.-K. Cho, “Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review,” J. Biosystems Eng. 40(1), 67–77 (2015).
[Crossref]

Connell, G. A. N.

Cook, J. M.

Cui, J.

Dana, A.

Dang, C.

Dannberg, P.

Das, A. J.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

Diezma, B.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Duparré, J.

Eckstein, H.-C.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

Faller, D. V.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Fan, S.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Feldner, P. W.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Feng, S.

Förster, E.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Fortuna, J.

Fraser, S. E.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Freeman, J. E.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Fuchs, F.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Gassner, C.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Gauglitz, G.

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

Geelen, B.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Gerritsen, A. F.

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

Grewe, A.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

Grøtte, M. E.

Han, F.

Haraguchi, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

Hartmann, W.

Harzendorf, T.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Hashiguchi, N.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

Hedborg, J.

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Herrero-Langreo, A.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Herzig, H. P.

S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
[Crossref]

Hillenbrand, M.

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

Hiraoka, Y.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

Huang, W.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Hubold, M.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Huynh, D.-N.

Johansen, T. A.

Kirner, R.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

Kleindienst, R.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

Kley, E.-B.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Korvink, J.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Korvink, J. G.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

Kothari, I.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

Koujin, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

Lambrechts, A.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Lansford, R.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Lawrence, K. C.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Leitel, R.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref] [PubMed]

Letalick, D.

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Lew, R. A.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Li, J.

Y. Xu, J. Li, C. Bai, H. Yuan, and J. Liu, “Ultra-compact Fourier transform imaging spectrometer using a focal plane birefringent interferometer,” Opt. Lett. 43(17), 4081–4084 (2018).
[Crossref] [PubMed]

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Li, X.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Line, J. E.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Liu, C.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Liu, J.

Lohumi, S.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Lorenz, L.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

Mathews, S. A.

Matthes, A.

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

McGonigle, A. J. S.

Michaelis, D.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Min, H.

H. Min and B.-K. Cho, “Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review,” J. Biosystems Eng. 40(1), 67–77 (2015).
[Crossref]

Mishra, P.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Möller, S.

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Ngo, D.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Oliva, M.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Ozgur, E.

Panasyuk, S. V.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Park, B.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Parren, P. W. H. I.

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

Pering, T. D.

Pernice, W.

Popovic, Z. D.

Raskar, R.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Renhorn, I. G. E.

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Riedl, T.

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

Rogers, A. E.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Rossi, M.

S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
[Crossref]

Sadot, D.

Sahoo, S. K.

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Scheunders, P.

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Schleicher, P.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

Schreiber, P.

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

Shimi, T.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

Sigernes, F.

Sinzinger, S.

M. Hillenbrand, L. Lorenz, R. Kleindienst, A. Grewe, and S. Sinzinger, “Spectrally multiplexed chromatic confocal multipoint sensing,” Opt. Lett. 38(22), 4694–4697 (2013).
[Crossref] [PubMed]

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

Siragusa, G. R.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Sprague, R. A.

Storvold, R.

Stumpf, M.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

Stürmer, M.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Syrjäsuo, M.

Tack, N.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Tang, D.

Torunoglu, G.

Traut, S.

S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
[Crossref]

Tünnermann, A.

Varytis, P.

Verzijl, D.

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

Wahi, A.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

Wallrabe, U.

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Wang, W.

Weiß, R.

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

Wilkes, T. C.

Willmott, J. R.

Windham, W. R.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Wippermann, F.

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

Wu, J.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Xie, H.

Xu, Y.

Yang, S.

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Yeminy, T.

Yoon, S. C.

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Yuan, H.

Zalevsky, Z.

Zeitner, U. D.

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Zhang, B.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Zhang, X.

Zhao, C.

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Adv. Opt. Technol. (1)

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Technol. 5(2), 167–176 (2016).

Anal. Bioanal. Chem. (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Biosens. Bioelectron. (1)

D. Verzijl, T. Riedl, P. W. H. I. Parren, and A. F. Gerritsen, “A novel label-free cell-based assay technology using biolayer interferometry,” Biosens. Bioelectron. 87, 388–395 (2017).
[Crossref] [PubMed]

Biosyst. Eng. (1)

P. Mishra, M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders, “Close range hyperspectral imaging of plants,” Biosyst. Eng. 164, 49–67 (2017).
[Crossref]

Cancer Biol. Ther. (1)

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, “Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6(3), 439–446 (2007).
[Crossref] [PubMed]

Food Res. Int. (1)

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan, J. Wu, and C. Liu, “Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review,” Food Res. Int. 62, 326–343 (2014).
[Crossref]

Genes Cells (1)

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluorescence microscopy,” Genes Cells 7(9), 881–887 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

J. Biosystems Eng. (1)

H. Min and B.-K. Cho, “Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review,” J. Biosystems Eng. 40(1), 67–77 (2015).
[Crossref]

J. Mod. Opt. (1)

S. Traut, M. Rossi, and H. P. Herzig, “Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array,” J. Mod. Opt. 47(13), 2391–2397 (2000).
[Crossref]

Micromachines (Basel) (1)

P. Dannberg, F. Wippermann, A. Brückner, A. Matthes, P. Schreiber, and A. Bräuer, “Wafer-Level Hybrid Integration of Complex Micro-Optical Modules,” Micromachines (Basel) 5(2), 325–340 (2014).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Opt. Eng. (1)

I. G. E. Renhorn, D. Bergström, J. Hedborg, D. Letalick, and S. Möller, “High spatial resolution hyperspectral camera based on a linear variable filter,” Opt. Eng. 55(11), 114105 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (1)

Proc. SPIE (4)

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

M. Hillenbrand, A. Grewe, M. Bichra, R. Kleindienst, L. Lorenz, R. Kirner, R. Weiß, and S. Sinzinger, “Parallelized chromatic confocal sensor systems,” Proc. SPIE 8788, 87880V (2013).
[Crossref]

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

H.-C. Eckstein, U. D. Zeitner, R. Leitel, M. Stumpf, P. Schleicher, A. Bräuer, and A. Tünnermann, “High dynamic grayscale lithography with an LED based micro-image stepper,” Proc. SPIE 9780, 97800T (2016).
[Crossref]

Rev. Sci. Instrum. (1)

M. Abdo, E. Förster, P. Bohnert, V. Badilita, R. Brunner, U. Wallrabe, and J. G. Korvink, “Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation,” Rev. Sci. Instrum. 89(8), 083113 (2018).
[Crossref] [PubMed]

Sci. Rep. (1)

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6(1), 32504 (2016).
[Crossref] [PubMed]

Sens. Instrum. Food Qual. Saf. (1)

S. C. Yoon, K. C. Lawrence, J. E. Line, G. R. Siragusa, P. W. Feldner, B. Park, and W. R. Windham, “Detection of Camylobacter colonies using hyperspectral imaging,” Sens. Instrum. Food Qual. Saf. 4(1), 35–49 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical design of the micro spectrometer array shown in two orthogonal cross sections and illustrating the spectral dispersion in as well as the packing of four neighboring channels (top) as well as the lateral resolution within a single channel (bottom). Colors represent five different wavelengths in the 500 … 900 nm spectral range. The total length of the system is 6.6 mm with a channel aperture diameter of 300 µm and a channel pitch of 350 µm in the array.
Fig. 2
Fig. 2 Examples of the system’s final elements arranged in an array with 350 µm pitch and 300 µm clear aperture. (a) Transmission photograph of the entrance slit array exhibiting the dimensions 10 µm x 100 µm. (b) Bright field image of the lens array with spacer structure. (c) Cross section profile of the replicated linear prism array.
Fig. 3
Fig. 3 Illustration of the mounting procedure using a color CCD camera observation. (a) Sketch of the observation geometry when observing the sample’s surface with a CCD camera. “Sample” indicates the position where the individual components of the micro spectrometer array are placed during alignment and mounting. (b) Photograph of the four micro optics elements prior to mounting with the four pieces labelled by their optical functionality (L1 – slit & lens 1 array, PG – prism grating, L2 – lens 2 array, CT – cross talk preventing module). (c) Close up photograph of element L1 with top side illumination. (d)-(f) Images taken in the configuration (a) during the subsequent alignment steps of all elements, i.e., with the slit & lens 1 and the prism-grating wafer added (d), after adding the lens 2 wafer (e), and after adding the cross talk module (f). The scale bar in (c)-(f) corresponds to the 350 µm array pitch.
Fig. 4
Fig. 4 Photograph of the micro spectrometer array mounted onto a commercial camera in comparison to the camera without micro spectrometer array (a). The wavelength axis calibration (b) utilizes an Hg/Cd lamp, the spectrum of which has been measured with a fiber spectrometer (blue line) as well as one channel of the micro spectrometer array (red).
Fig. 5
Fig. 5 Dispersion values measured for the individual micro spectrometers of the array are plotted vs. the position of each spectrometer in the array, which as indicated by the channel number along the x and y directions. Black spots indicate erroneous results due to blocked channels in the cross talk module.
Fig. 6
Fig. 6 Illustration of image constitution and lateral resolution. The full image taken by the standard camera (a) as well as the full micro spectrometer array image (b) of a metal structure on glass observed with 5x / 0.13 objective and top side illumination (rendering the metal structures bright). The magnified parts of both images shown in (c) and (e) are marked by red rectangles in (a) and (b), respectively. Diagram (d) plots the spectral data as derived for three columns of pixels from the one spectrometer channel shown in (e).
Fig. 7
Fig. 7 Application to spectroscopic imaging of lilium pollen using 50x / 0.70 objective with top side illumination. Dark field (a, c) and fluorescence (b, d, e) data of the same object are plotted as b/w images (a, b) with the spectral distributions (c, d) extracted at the positions indicated by colored circles. Diagram (e) displays a false color representation of the maximum fluorescence wavelength of the same data set as (b, d).

Metrics