Abstract

Perfect absorbers play crucial roles in optical functional devices. Among various types of absorbers, moth-eye structures are known for their excellent absorbing efficiency. In this paper, we apply an electromagnetic multipole expansion method to treat an isolated all-dielectric moth-eye structure as a large particle and calculate various electric and magnetic multipole modes within the moth-eye structure. In periodical array, the multipole modes within each particle interact with each other. These constructive or destructive interactions cause shifts in the multipole resonant peaks. The multipole modes inside the particle array introduce reflecting peaks for loss-less materials. The absorption enhancement inside moth-eye structures can be attributed to the electric field enhancement resulting from these electric and magnetic multipole modes. Based on our theoretical study, we propose a near-ideal selective absorber based on moth-eye array, which achieves near 100% absorption within wavelength range from 400 nm to 1500 nm while achieving near 0% absorption over about 1700 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin
J. Opt. Soc. Am. B 29(1) 88-100 (2012)

Generalized Kerker effects in nanophotonics and meta-optics [Invited]

Wei Liu and Yuri S. Kivshar
Opt. Express 26(10) 13085-13105 (2018)

Exploring optical resonances of nanoparticles excited by optical Skyrmion lattices

Qiang Zhang, Zhenzhen Liu, Feifei Qin, Shang Jie Zeng, Dasen Zhang, Zhiyuan Gu, Xiangli Liu, and Jun-Jun Xiao
Opt. Express 27(5) 7009-7022 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  2. D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
    [Crossref] [PubMed]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, T. Nagao, and K. P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41(19), 4453–4456 (2016).
    [Crossref] [PubMed]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  7. W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
    [Crossref]
  8. B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
    [Crossref]
  9. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  10. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  11. Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
    [Crossref]
  12. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  13. A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
    [Crossref]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  15. G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in sic micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
    [Crossref]
  16. J. Cong, Z. Zhou, B. Yun, L. Lv, H. Yao, Y. Fu, and N. Ren, “Broadband visible-light absorber via hybridization of propagating surface plasmon,” Opt. Lett. 41(9), 1965–1968 (2016).
    [Crossref] [PubMed]
  17. D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).
  18. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  19. D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
    [Crossref]
  20. Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
    [Crossref] [PubMed]
  21. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [Crossref]
  22. R. Contractor, G. D’Aguanno, and C. Menyuk, “Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces,” Opt. Express 26(18), 24031–24043 (2018).
    [Crossref] [PubMed]
  23. B. S. Thornton, “Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am. 65(6), 748 (1975).
    [Crossref]
  24. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [Crossref]
  25. F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
    [Crossref] [PubMed]
  26. C. Zhang, P. Yi, L. Peng, and J. Ni, “Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection,” Appl. Opt. 56(10), 2901–2907 (2017).
    [Crossref] [PubMed]
  27. Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
    [Crossref] [PubMed]
  28. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24(10), 10172–10187 (2016).
    [Crossref] [PubMed]
  29. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
    [Crossref] [PubMed]
  30. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  31. G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
    [Crossref] [PubMed]
  32. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref] [PubMed]
  33. P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
    [Crossref]
  34. P. Grahn, “P, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14(14), 658–666 (2012).
  35. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  38. C. Mätzler, MATLAB functions for Mie scattering and absorption, version 2, Research Report, (University of Bern, 2011).
  39. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref] [PubMed]
  40. S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95(19), 195406 (2017).
    [Crossref]
  41. V. E. Babicheva and A. B. Evlyukhin, “Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses,” Laser Photonics Rev. 11(6), 1700132 (2017).
    [Crossref]
  42. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
    [Crossref]
  43. T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
    [Crossref]
  44. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
    [Crossref]
  45. J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
    [Crossref]
  46. A. Ishimaru, Wave propagation and scattering in random media (IEEE, 1978).
  47. O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
    [Crossref]
  48. J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
    [Crossref] [PubMed]

2018 (5)

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
[Crossref]

R. Contractor, G. D’Aguanno, and C. Menyuk, “Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces,” Opt. Express 26(18), 24031–24043 (2018).
[Crossref] [PubMed]

2017 (6)

C. Zhang, P. Yi, L. Peng, and J. Ni, “Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection,” Appl. Opt. 56(10), 2901–2907 (2017).
[Crossref] [PubMed]

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95(19), 195406 (2017).
[Crossref]

V. E. Babicheva and A. B. Evlyukhin, “Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses,” Laser Photonics Rev. 11(6), 1700132 (2017).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in sic micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

2014 (4)

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

2013 (4)

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

2012 (5)

P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
[Crossref]

P. Grahn, “P, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14(14), 658–666 (2012).

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2011 (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

2010 (7)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (2)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

1975 (1)

Aggarwal, I. D.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva and A. B. Evlyukhin, “Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses,” Laser Photonics Rev. 11(6), 1700132 (2017).
[Crossref]

Bagal, A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Banzer, P.

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Bergstrom, P. L.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Berthelot, J.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Bingham, C. M.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Bonod, N.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Brener, I.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Brönstrup, G.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Busse, L. E.

Cao, L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Chang, C. H.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Chen, H. J.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, K. P.

Chen, L.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

Christiansen, S.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Cong, J.

Contractor, R.

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Csáki, A.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

D’Aguanno, G.

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Dao, T. D.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, T. Nagao, and K. P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41(19), 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Demaille, D.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Devarapu, G. C. R.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in sic micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Eismann, J. S.

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Evlyukhin, A. B.

V. E. Babicheva and A. B. Evlyukhin, “Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses,” Laser Photonics Rev. 11(6), 1700132 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

Eyck, G. T.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Fan, P.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Foteinopoulou, S.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in sic micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Fritzsche, W.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Fu, Y.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gallas, B.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Garcia-Caurel, E.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

González, F.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

Grahn, P.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
[Crossref]

P. Grahn, “P, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14(14), 658–666 (2012).

Guida, G.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Guney, D. O.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Guo, W.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Gwamuri, J.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hoffman, A. J.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Ishii, S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, T. Nagao, and K. P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41(19), 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Jahr, N.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jun, Y. C.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Kaivola, M.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Kim, J. O.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Krishna, S.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Landy, N. I.

Law, S.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Leiterer, C.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

Li, R.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Li, R. F.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Li, Y.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Lin, Z. Y.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Liu, C.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Liu, L.

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, P.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

Liu, Y. M.

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

Lu, N.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

Lv, L.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, R.

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Menyuk, C.

Menyuk, C. R.

Merchiers, O.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Moreno, F.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, T. Nagao, and K. P. Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41(19), 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Neugebauer, M.

Neuner, B.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Ni, J.

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pearce, J. M.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Peng, L.

Podolskiy, V. A.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Qi, D.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Qiu, J.

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

Ren, N.

Roberts, C.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Rosenberg, A.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Saiz, J. M.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

Sanghera, J. S.

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Sharma, Y. D.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Shaw, L. B.

Shevchenko, A.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
[Crossref]

Shi, G.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Shvets, G.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Sinclair, M.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Sipe, J. E.

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95(19), 195406 (2017).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Streyer, W.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Sun, M. G.

Swiecicki, S. D.

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95(19), 195406 (2017).
[Crossref]

Tao, H.

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Thornton, B. S.

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Vora, A.

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

Wang, C. X.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Wang, H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Wang, Y.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Wasserman, D.

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weiblen, R. J.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Wu, C.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Wu, D.

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Wu, F.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Xu, H.

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, Z. H.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

Yan, J. H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Yang, G. W.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Yang, Z. Y.

Yao, H.

Ye, H.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Yi, P.

Yokoyama, T.

Yoo, T. S. H.

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

Yu, L.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Yu, Z.

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Yu, Z. Y.

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

Yun, B.

Zhang, C.

Zhang, J.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Zhang, J. Q. N.

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

Zhang, X.

Zhang, X. A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Zhao, J.

Zhou, Z.

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Zywietz, U.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

F. Wu, G. Shi, H. Xu, L. Liu, Y. Wang, D. Qi, and N. Lu, “Fabrication of antireflective compound eyes by imprinting,” ACS Appl. Mater. Interfaces 5(24), 12799–12803 (2013).
[Crossref] [PubMed]

ACS Nano (1)

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4(12), 7113–7122 (2010).
[Crossref] [PubMed]

ACS Photonics (2)

T. S. H. Yoo, J. Berthelot, G. Guida, D. Demaille, E. Garcia-Caurel, N. Bonod, and B. Gallas, “Circularly polarized images with contrast reversal using pseudochiral metasurfaces,” ACS Photonics 5(10), 4068–4073 (2018).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

W. Streyer, S. Law, A. Rosenberg, C. Roberts, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Engineering absorption and blackbody radiation in the far infrared with surface phonon polaritons on gallium phosphide,” Appl. Phys. Lett. 104(13), 131105 (2014).
[Crossref]

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Vora, J. Gwamuri, J. M. Pearce, P. L. Bergstrom, and D. O. Guney, “Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation,” J. Appl. Phys. 116(9), 093103 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

V. E. Babicheva and A. B. Evlyukhin, “Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses,” Laser Photonics Rev. 11(6), 1700132 (2017).
[Crossref]

Mater. Des. (1)

D. Wu, C. Liu, Z. H. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. F. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Nano Lett. (4)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12(1), 427 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013).
[Crossref] [PubMed]

Nat. Commun. (3)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6(1), 7042 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

P. Grahn, “P, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14(14), 658–666 (2012).

Opt. Commun. (1)

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancementin metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (Coll. Park) (1)

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A (Coll. Park) 76(4), 43834 (2007).
[Crossref]

Phys. Rev. Appl. (1)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband near-unidirectional absorption enabled by phonon-polariton resonances in sic micropyramid arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Phys. Rev. B (1)

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95(19), 195406 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B Condens. Matter Mater. Phys. 86(3), 35419 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 45404 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245411 (2012).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Solar RRL (1)

D. Wu, C. Liu, Y. M. Liu, Z. H. Xu, Z. Y. Yu, L. Yu, L. Chen, R. Ma, and J. Q. N. Zhang, “Numerical study of the wide-angle polarization-independent ultra-broadband efficient selective solar absorber in the entire solar spectrum,” Solar RRL 8(38), 21054–21064 (2018).

Other (5)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

C. Mätzler, MATLAB functions for Mie scattering and absorption, version 2, Research Report, (University of Bern, 2011).

A. Ishimaru, Wave propagation and scattering in random media (IEEE, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Sketch of a spherical germanic particle with a diameter of 534nm. (b) Total scattering cross section (SCS) of the spherical particle acquired through three calculating methods. For EME result, the accumulation in Eq. (3) are calculated up to l = 6.
Fig. 2
Fig. 2 (a) An individual spherical particle. (b) An individual cubic particle. (c) An individual moth-eye particle (or conical particle). The size parameter of the three particles are set to have the same volume. The diameter of the sphere is 543nm. The side length of the cubic is 430nm. The diameter of the bottom of the moth-eye particle is 450nm and the height of the moth-eye particle is 1500nm.
Fig. 3
Fig. 3 (a) Total scattering cross section (SCS) of the three particles calculated through EME method. (b) Disordered electric field distribution in the y = 0 plane inside the moth-eye particle when the incident wavelength is 850nm.
Fig. 4
Fig. 4 Electric and magnetic multipole components inside different shaped particles. The figures in the first row depict the electric multipole modes including electric dipole (ED, l = 1), electric quadrupole (EQ, l = 2), electric octupole (EO, l = 3), and electric hexadecupole (EH, l = 4), respectively. Those in the second row depict the magnetic multipole modes including magnetic dipole (MD, l = 1), magnetic quadrupole (MQ, l = 2), magnetic octupole (MO, l = 3), and magnetic hexadecupole (MH, l = 4), respectively.
Fig. 5
Fig. 5 (a) Sketch of the periodical spherical-particle array. The periodicity of the array is 1500nm in both x- and y- direction, respectively. The index of the spherical particle is set as 4 in this section. (b) The sketch of the periodical moth-eye particle array. The periodicity of the array 500nm in both x- and y- direction. The structural parameters of the spherical and moth-eye particle stay the same as in Fig. 2.
Fig. 6
Fig. 6 (a) ED polarizability of the isolated spherical particle with reflective index n = 4 and effective ED polarizability in the periodical spherical-particle array. (b) The corresponding MD polarizability and the effective MD polarizability. The periodicity of the spherical-particle array is set as Px = Py = 1500nm to fulfill the dipole-approximating condition.
Fig. 7
Fig. 7 (a) ED resonant condition for the individual particle (Re(1/αE) = 0, grey line) and the particle array (Re(1/αeffE) = 0, black line). (b) MD resonant condition for the individual particle (Re(1/αM) = 0, grey line) and the particle array (Re(1/αeffM) = 0, grey line). The operator ‘Re()’ is omitted in both figures for conciseness. The ED and MD resonant wavelengths of the particle array are marked in the figures as λED and λMD.
Fig. 8
Fig. 8 (a) Normalized total SCS of an isolated spherical particle and the reflection of the spherical particle array in Fig. 5(a). The reflection spectrum of the periodical array is calculated through Lumerical FDTD. (b) High order electric and magnetic modes inside the single sphere with the refractive index n = 4.
Fig. 9
Fig. 9 (a) Reflection spectrum of the moth-eye array that made of an imaginary loss-less material whose refractive index is nm = 4. (b) Reflection spectrum of the moth-eye array that made of an imaginary lossy material whose refractive index is nm = 4 + 0.5i.
Fig. 10
Fig. 10 (a) Absorbing cross sections (ACSs) of the germanic moth-eye particle and the germanic spherical particle. (b) Absorbing spectrum of the moth-eye germanic particle array and the spherical germanic particle array. The periodicity of the both arrays changes to 600nm for comparison.
Fig. 11
Fig. 11 Averaged electric field amplitude inside the moth-eye particle and the spherical particle.
Fig. 12
Fig. 12 (a) Sketch of the germanium moth-eye array with a 3-μm Ge- substrate. The parameters of the moth-eye array upon the substrate stay unchanged. (b) Absorption spectrum of the moth-eye array with (W) or without (W/O) the substrate, and the absorption of a bare Ge- substrate. FDTD and FEM (COMSOL) method are both adopted to ensure the accuracy of the simulation result.
Fig. 13
Fig. 13 (a) Scattering amplitude of the lower-ordered multipole modes calculated using EME method varying with the incident angle for a single moth-eye particle at wavelength 900nm. (b) Absorbing cross sections (ACSs) varying with the incident angle at wavelength 900nm.
Fig. 14
Fig. 14 (a) The longitudinal coupling modes between the electric dipoles (EDs) at normal incidence. (b) Parallel coupling modes between EDs at incident angle θ = 90°. (c) Absorbing spectrum for the proposed structure varying with the incident angle.
Fig. 15
Fig. 15 (a) Absorbing spectrum of the moth-eye array made of different semiconductor materials. (b) Extinction coefficients of the three semiconductor materials.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

a E (l,m)= (i) (l1) k 2 η O lm E 0 [π(2l+1)] 1/2 exp(imϕ) {[ Ψ l (kr)+ Ψ l (kr)] P l m (cosθ) r ^ J S,j (r) + Ψ l (kr) kr [ τ lm (θ) θ ^ J S,j (r)iπ(θ) ϕ ^ J S,j (r)]} d 3 r
a M (l,m)= (i) (l1) k 2 η O lm E 0 [π(2l+1)] 1/2 exp(imϕ) j l (k,r)[ τ lm (θ) ϕ ^ J S,j (r)+iπ(θ) θ ^ J S,j (r)]} d 3 r,
C s = π k 2 l=1 m=l l (2l+1) [| a E (l,m) | 2 +| a M (l,m) | 2 ]
p x = ε 0 E 0 ε 0 / α E k s 2 G xx 0 m y = H 0 1/ α M k s 2 G yy 0 ,
α E =i 6π ε 0 ε s k s 3 a 1 α M =i 6π k s 3 b 1 ,
1/ α eff E = ε 0 / α E k s 2 G xx 0 1/ α eff M =1/ α M k s 2 G yy 0
D L 1/2 > k s 2 | α eff E | 2 +| α eff M | 2 Im( α eff E )+Im( α eff M )
1/ α eff Eq = ε 0 / α Eq k s 2 G jl q /2 1/ α eff Mq =1/ α Mq k s 2 G jl q /2
r= i k d 2 D L ( α eff E α eff M )
r= i k d 2 D L ( α eff D + α eff Q + α eff O + α eff H +...)
σ abs =k ε | E m | 2 d r 3 ,
E 1 = | E m | 2 d r 3 V 0 ,

Metrics