Abstract

Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

12 March 2019: A correction was made to the funding section.


OSA Recommended Articles
Hilbert–Huang single-shot spatially multiplexed interferometric microscopy

José Ángel Picazo-Bueno, Maciej Trusiak, Javier García, Krzysztof Patorski, and Vicente Micó
Opt. Lett. 43(5) 1007-1010 (2018)

Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy

Maciej Trusiak, Vicente Mico, Javier Garcia, and Krzysztof Patorski
Opt. Lett. 41(18) 4344-4347 (2016)

Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens

Ana Doblas, Diego Hincapie-Zuluaga, Genaro Saavedra, Manuel Martínez-Corral, and Jorge Garcia-Sucerquia
Appl. Opt. 54(16) 5229-5233 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  2. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  3. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherence light microscopy – Imaging and quantitative phase analysis (Springer, 2011).
  4. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  5. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Oxford Academy, 2012).
  6. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  7. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  8. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13(18), 6738–6749 (2005).
    [Crossref] [PubMed]
  9. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  10. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [Crossref] [PubMed]
  11. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
    [Crossref] [PubMed]
  12. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
    [Crossref] [PubMed]
  13. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
    [Crossref] [PubMed]
  14. F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
    [Crossref] [PubMed]
  15. D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
    [Crossref] [PubMed]
  16. J. Á. Picazo-Bueno, D. Cojoc, F. Iseppon, V. Torre, and V. Micó, “Single-shot, dual-mode, water-immersion microscopy platform for biological applications,” Appl. Opt. 57(1), A242–A249 (2018).
    [Crossref] [PubMed]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  18. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
    [Crossref] [PubMed]
  19. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005).
    [Crossref] [PubMed]
  20. D. Claus and D. Iliescu, “Optical parameters and space-bandwidth product optimization in digital holographic microscopy,” Appl. Opt. 52(1), A410–A422 (2013).
    [Crossref] [PubMed]
  21. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  22. T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “Aliasing, coherence, and resolution in a lensless holographic microscope,” Opt. Lett. 42(12), 2271–2274 (2017).
    [Crossref] [PubMed]
  23. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [Crossref] [PubMed]
  24. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18(15), 15318–15331 (2010).
    [Crossref] [PubMed]
  25. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
    [Crossref] [PubMed]
  26. B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37(11), 1868–1870 (2012).
    [Crossref] [PubMed]
  27. T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).
    [Crossref] [PubMed]
  28. B. Sha, X. Liu, X.-L. Ge, and C.-S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22(19), 23066–23072 (2014).
    [Crossref] [PubMed]
  29. I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
    [Crossref] [PubMed]
  30. X. He, C. V. Nguyen, M. Pratap, Y. Zheng, Y. Wang, D. R. Nisbet, R. J. Williams, M. Rug, A. G. Maier, and W. M. Lee, “Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy,” Biomed. Opt. Express 7(8), 3111–3123 (2016).
    [Crossref] [PubMed]
  31. M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
    [Crossref] [PubMed]
  32. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
    [Crossref]
  33. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
    [Crossref] [PubMed]
  34. P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34(22), 3553–3555 (2009).
    [Crossref] [PubMed]
  35. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
    [Crossref] [PubMed]
  36. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [Crossref] [PubMed]
  37. P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28(3), 434–440 (2011).
    [Crossref] [PubMed]
  38. T. D. Yang, H.-J. Kim, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24(9), 9480–9488 (2016).
    [Crossref] [PubMed]
  39. C. Tian and S. Liu, “Phase retrieval in two-shot phase-shifting interferometry based on phase shift estimation in a local mask,” Opt. Express 25(18), 21673–21683 (2017).
    [Crossref] [PubMed]
  40. J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
    [Crossref] [PubMed]
  41. C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
    [Crossref] [PubMed]
  42. L. Orzó, “High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms,” Opt. Express 23(13), 16638–16649 (2015).
    [Crossref] [PubMed]
  43. F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
    [Crossref]
  44. F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
    [Crossref]
  45. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
    [Crossref] [PubMed]
  46. J. Han, P. Gao, B. Yao, Y. Gu, and M. Huang, “Slightly off-axis interferometry for microscopy with second wavelength assistance,” Appl. Opt. 50(17), 2793–2798 (2011).
    [Crossref] [PubMed]
  47. L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2(4), 987–995 (2011).
    [Crossref] [PubMed]
  48. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
    [Crossref] [PubMed]
  49. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
    [Crossref] [PubMed]
  50. C. S. Guo, B. Y. Wang, B. Sha, Y. J. Lu, and M. Y. Xu, “Phase derivative method for reconstruction of slightly off-axis digital holograms,” Opt. Express 22(25), 30553–30558 (2014).
    [Crossref] [PubMed]
  51. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
    [Crossref]
  52. M. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24(25), 29033–29039 (2016).
    [Crossref] [PubMed]
  53. H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
    [Crossref]
  54. Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
    [Crossref]
  55. Y. Yang, Z.-J. Cheng, H.-M. Zhao, Q.-Y. Yue, and C.-S. Guo, “Quantitative phase imaging system with slightly-off-axis configuration and suitable for objects both larger and smaller than the size of the image sensor,” Opt. Express 26(13), 17199–17208 (2018).
    [Crossref] [PubMed]
  56. M. León-Rodríguez, J. A. Rayas, R. R. Cordero, A. Martínez-García, A. Martínez-Gonzalez, A. Téllez-Quiñones, P. Yañez-Contreras, and O. Medina-Cázares, “Dual-plane slightly off-axis digital holography based on a single cube beam splitter,” Appl. Opt. 57(10), 2727–2735 (2018).
    [Crossref] [PubMed]
  57. J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
    [Crossref]
  58. W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50(6), 886–890 (2011).
    [Crossref] [PubMed]
  59. W. Qu, K. Bhattacharya, C. O. Choo, Y. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48(15), 2778–2783 (2009).
    [Crossref] [PubMed]
  60. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284(18), 4136–4140 (2011).
    [Crossref]
  61. H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20(24), 26906–26912 (2012).
    [Crossref] [PubMed]
  62. J. Braat, “Analytical expressions for the wave-front aberration coefficients of a tilted plane-parallel plate,” Appl. Opt. 36(32), 8459–8467 (1997).
    [Crossref] [PubMed]
  63. X. Zhong, T. Wang, J. Yan, and G. Jin, “Aberrations correction of tilted plane-parallel plate in convergent rays,” Appl. Opt. 54(7), 1758–1764 (2015).
    [Crossref]
  64. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [Crossref] [PubMed]
  65. J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166 (2011).
    [Crossref] [PubMed]
  66. J. Arines and E. Acosta, “Adaptive astigmatism-correcting device for eyepieces,” Optom. Vis. Sci. 88(12), 1524–1528 (2011).
    [PubMed]
  67. G. G. Stokes, On a mode of measuring the astigmatism of a defective eye in Mathematical and Physical Papers (Cambridge University, 1883), Vol. 2, pp. 172–175.
  68. J. P. Foley and C. Campbell, “An optical device with variable astigmatic power,” Optom. Vis. Sci. 76(9), 664–667 (1999).
    [Crossref] [PubMed]
  69. E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
    [Crossref] [PubMed]
  70. G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
    [Crossref] [PubMed]
  71. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  72. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
    [Crossref] [PubMed]
  73. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
    [Crossref] [PubMed]
  74. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
    [Crossref] [PubMed]
  75. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [Crossref] [PubMed]
  76. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
    [Crossref] [PubMed]
  77. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [Crossref] [PubMed]
  78. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
    [Crossref] [PubMed]
  79. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
    [Crossref] [PubMed]
  80. V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22(12), 14929–14943 (2014).
    [Crossref] [PubMed]
  81. S. Karepov, N. T. Shaked, and T. Ellenbogen, “Off-axis interferometer with adjustable fringe contrast based on polarization encoding,” Opt. Lett. 40(10), 2273–2276 (2015).
    [Crossref] [PubMed]
  82. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
    [Crossref] [PubMed]
  83. J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
    [Crossref] [PubMed]
  84. J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
    [Crossref] [PubMed]
  85. J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
    [Crossref] [PubMed]
  86. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  87. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1(2), 610–616 (2010).
    [Crossref] [PubMed]
  88. B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
    [Crossref] [PubMed]

2018 (5)

2017 (8)

J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
[Crossref] [PubMed]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

C. Tian and S. Liu, “Phase retrieval in two-shot phase-shifting interferometry based on phase shift estimation in a local mask,” Opt. Express 25(18), 21673–21683 (2017).
[Crossref] [PubMed]

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “Aliasing, coherence, and resolution in a lensless holographic microscope,” Opt. Lett. 42(12), 2271–2274 (2017).
[Crossref] [PubMed]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (3)

2014 (6)

2013 (3)

2012 (9)

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[Crossref] [PubMed]

F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
[Crossref] [PubMed]

B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37(11), 1868–1870 (2012).
[Crossref] [PubMed]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20(24), 26906–26912 (2012).
[Crossref] [PubMed]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref] [PubMed]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[Crossref] [PubMed]

B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
[Crossref] [PubMed]

2011 (11)

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284(18), 4136–4140 (2011).
[Crossref]

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50(6), 886–890 (2011).
[Crossref] [PubMed]

J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166 (2011).
[Crossref] [PubMed]

J. Arines and E. Acosta, “Adaptive astigmatism-correcting device for eyepieces,” Optom. Vis. Sci. 88(12), 1524–1528 (2011).
[PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

J. Han, P. Gao, B. Yao, Y. Gu, and M. Huang, “Slightly off-axis interferometry for microscopy with second wavelength assistance,” Appl. Opt. 50(17), 2793–2798 (2011).
[Crossref] [PubMed]

L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2(4), 987–995 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref] [PubMed]

H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28(3), 434–440 (2011).
[Crossref] [PubMed]

2010 (9)

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[Crossref] [PubMed]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
[Crossref] [PubMed]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18(15), 15318–15331 (2010).
[Crossref] [PubMed]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
[Crossref] [PubMed]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
[Crossref] [PubMed]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express 1(2), 610–616 (2010).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

2009 (6)

2008 (3)

2007 (2)

2006 (2)

2005 (5)

2004 (2)

2000 (1)

1999 (1)

J. P. Foley and C. Campbell, “An optical device with variable astigmatic power,” Optom. Vis. Sci. 76(9), 664–667 (1999).
[Crossref] [PubMed]

1997 (2)

1983 (1)

G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
[Crossref] [PubMed]

Acosta, E.

J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166 (2011).
[Crossref] [PubMed]

J. Arines and E. Acosta, “Adaptive astigmatism-correcting device for eyepieces,” Optom. Vis. Sci. 88(12), 1524–1528 (2011).
[PubMed]

Agbana, T. E.

Alcón, E.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

Alfieri, D.

Amoah, A. S.

Anand, A.

Antoš, M.

Arfire, C.

Arines, J.

J. Arines and E. Acosta, “Adaptive astigmatism-correcting device for eyepieces,” Optom. Vis. Sci. 88(12), 1524–1528 (2011).
[PubMed]

J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166 (2011).
[Crossref] [PubMed]

Artal, P.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

Aspert, N.

Asundi, A.

Awatsuji, Y.

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

Bai, H.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Bergoënd, I.

Bezzubik, V.

Bhaduri, B.

Bhattacharya, K.

Bon, P.

Boothroyd, C. B.

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

Boss, D.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

Braat, J.

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

Campbell, C.

J. P. Foley and C. Campbell, “An optical device with variable astigmatic power,” Optom. Vis. Sci. 76(9), 664–667 (1999).
[Crossref] [PubMed]

Carl, D.

Charrière, F.

Chee, O. C.

Cheng, Z.-J.

Chhaniwal, V.

Chmelík, R.

Choi, W.

Choi, Y.

Choo, C. O.

Claus, D.

Cojoc, D.

Colomb, T.

Coppola, G.

Cordero, R. R.

Cuche, E.

Cui, X.

Dan, D.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

Dardikman, G.

Das, B.

B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
[Crossref] [PubMed]

Dasari, R. R.

De Nicola, S.

Depeursinge, C.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express 3(2), 313–326 (2012).
[Crossref] [PubMed]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18(15), 15318–15331 (2010).
[Crossref] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[Crossref] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

Ding, H.

Do, M.

Dorn, A.

Dostál, Z.

Duan, T.

Dunin-Borkowski, R. E.

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

Egli, M.

Ehlers, M. D.

Ellenbogen, T.

Emery, Y.

Feld, M. S.

Ferrari, J. A.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

Ferraro, P.

Ferreira, C.

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
[Crossref] [PubMed]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22(12), 14929–14943 (2014).
[Crossref] [PubMed]

Finizio, A.

Foley, J. P.

J. P. Foley and C. Campbell, “An optical device with variable astigmatic power,” Optom. Vis. Sci. 76(9), 664–667 (1999).
[Crossref] [PubMed]

Franco-Obregón, A.

Frenklach, I.

Frins, E. M.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

Fu, D.

Fujii, M.

Gabai, H.

Gao, P.

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28(3), 434–440 (2011).
[Crossref] [PubMed]

J. Han, P. Gao, B. Yao, Y. Gu, and M. Huang, “Slightly off-axis interferometry for microscopy with second wavelength assistance,” Appl. Opt. 50(17), 2793–2798 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284(18), 4136–4140 (2011).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[Crossref] [PubMed]

P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34(22), 3553–3555 (2009).
[Crossref] [PubMed]

García, J.

Ge, X.-L.

Geist, E.

Girshovitz, P.

Gong, H.

Grilli, S.

Gu, Y.

Guo, C. S.

Guo, C.-S.

Guo, L.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Guo, R.

Guo, Z.

Han, J.

Harder, I.

He, X.

Huang, M.

Ikeda, T.

Iliescu, D.

Iseppon, F.

Ito, K.

Javidi, B.

Jin, G.

Jourdain, P.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

Kakue, T.

Kandel, M. E.

Kaneko, A.

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Karepov, S.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[Crossref] [PubMed]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Kim, B.-M.

Kim, H.-J.

Kim, M.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Koch, C. T.

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

Kolman, P.

Koyama, T.

Kubota, T.

Kuehn, J.

Kühn, J.

Lai, J.

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Laporta, P.

Lee, K. J.

Lee, W. M.

Lei, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

Leitgeb, R. A.

León-Rodríguez, M.

Li, J.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Li, Z.

Lindlein, N.

Liu, L.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Liu, S.

Liu, X.

Lo, C. M.

Lošták, M.

Lu, X.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Lu, Y. J.

Ma, B.

Magistretti, P. J.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Maier, A. G.

Majeed, H.

Mann, C.

Mantel, K.

Marian, A.

Marquet, P.

Martínez-García, A.

Martínez-Gonzalez, A.

Matoba, O.

Maucort, G.

Medina-Cázares, O.

Merola, F.

Miao, J.

Miccio, L.

Mico, V.

Micó, V.

Min, J.

Mirsky, S. K.

Monneret, S.

Montfort, F.

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

Nastasa, V.

Nercissian, V.

Newpher, T. M.

Nguyen, C. V.

Nisbet, D. R.

Nishio, K.

Oh, S.

Orzó, L.

Osellame, R.

Ozsoy-Keskinbora, C.

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

Pan, F.

Panezai, S.

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

Pankratov, M. M.

G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
[Crossref] [PubMed]

Patel, S.

Patorski, K.

Paturzo, M.

Pavillon, N.

Peng, X.

Pham, H.

Picazo-Bueno, J. A.

Picazo-Bueno, J. Á.

Pierattini, G.

Pomerantzeff, O.

G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
[Crossref] [PubMed]

Popescu, G.

Pratap, M.

Qu, W.

Rao, D.

B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
[Crossref] [PubMed]

Rappaz, B.

Rayas, J. A.

Ren, J.

Richard, S.

Rinehart, M. T.

Roitshtain, D.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Rong, L.

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

Rubin, M.

Rug, M.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[Crossref]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Seelamantula, C. S.

Sha, B.

Shaked, N. T.

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
[Crossref] [PubMed]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
[Crossref] [PubMed]

S. Karepov, N. T. Shaked, and T. Ellenbogen, “Off-axis interferometer with adjustable fringe contrast based on polarization encoding,” Opt. Lett. 40(10), 2273–2276 (2015).
[Crossref] [PubMed]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[Crossref] [PubMed]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20(24), 26906–26912 (2012).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[Crossref] [PubMed]

Shan, M.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

M. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24(25), 29033–29039 (2016).
[Crossref] [PubMed]

Shang, P.

Shimozato, Y.

Singh, A. S. G.

Slabý, T.

Sobh, N.

Striano, V.

Tahara, T.

Tearney, G. J.

Téllez-Quiñones, A.

Tian, C.

Tian, J.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Torre, V.

Toy, M. F.

Trusiak, M.

Turko, N. A.

Unser, M.

Ura, S.

van Aken, P. A.

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

Vdovin, G.

Verhaegen, M.

Villegas, E. A.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[Crossref] [PubMed]

Wang, B. Y.

Wang, D.

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

Wang, F.

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

Wang, G. J.

G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
[Crossref] [PubMed]

Wang, S.

Wang, T.

Wang, Y.

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

X. He, C. V. Nguyen, M. Pratap, Y. Zheng, Y. Wang, D. R. Nisbet, R. J. Williams, M. Rug, A. G. Maier, and W. M. Lee, “Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy,” Biomed. Opt. Express 7(8), 3111–3123 (2016).
[Crossref] [PubMed]

Wang, Z.

Wattellier, B.

Wax, A.

Wernicke, G.

Williams, R. J.

Xiao, W.

Xu, J.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Xu, L.

Xu, M. Y.

Xue, L.

Yamaguchi, I.

Yamauchi, T.

Yan, J.

Yan, S.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

Yañez-Contreras, P.

Yang, C.

Yang, T. D.

Yang, Y.

Yao, B.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28(3), 434–440 (2011).
[Crossref] [PubMed]

J. Han, P. Gao, B. Yao, Y. Gu, and M. Huang, “Slightly off-axis interferometry for microscopy with second wavelength assistance,” Appl. Opt. 50(17), 2793–2798 (2011).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284(18), 4136–4140 (2011).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[Crossref] [PubMed]

P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34(22), 3553–3555 (2009).
[Crossref] [PubMed]

Yaqoob, Z.

Ye, T.

Yelleswarapu, C. S.

B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
[Crossref] [PubMed]

Yu, L.

Yu, X.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Yu, Y.

Yue, Q.-Y.

Zalevsky, Z.

Zhang, T.

Zhang, Y.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Zhao, H.-M.

Zhao, J.

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

Zheng, J.

Zheng, Y.

Zhong, L.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Zhong, X.

Zhong, Z.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Zhou, M.

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

Zhou, Y.

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[Crossref] [PubMed]

Appl. Opt. (16)

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

J. Á. Picazo-Bueno, D. Cojoc, F. Iseppon, V. Torre, and V. Micó, “Single-shot, dual-mode, water-immersion microscopy platform for biological applications,” Appl. Opt. 57(1), A242–A249 (2018).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

D. Claus and D. Iliescu, “Optical parameters and space-bandwidth product optimization in digital holographic microscopy,” Appl. Opt. 52(1), A410–A422 (2013).
[Crossref] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[Crossref] [PubMed]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
[Crossref] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
[Crossref] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48(34), H186–H195 (2009).
[Crossref] [PubMed]

J. Han, P. Gao, B. Yao, Y. Gu, and M. Huang, “Slightly off-axis interferometry for microscopy with second wavelength assistance,” Appl. Opt. 50(17), 2793–2798 (2011).
[Crossref] [PubMed]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50(6), 886–890 (2011).
[Crossref] [PubMed]

W. Qu, K. Bhattacharya, C. O. Choo, Y. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48(15), 2778–2783 (2009).
[Crossref] [PubMed]

J. Braat, “Analytical expressions for the wave-front aberration coefficients of a tilted plane-parallel plate,” Appl. Opt. 36(32), 8459–8467 (1997).
[Crossref] [PubMed]

X. Zhong, T. Wang, J. Yan, and G. Jin, “Aberrations correction of tilted plane-parallel plate in convergent rays,” Appl. Opt. 54(7), 1758–1764 (2015).
[Crossref]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

M. León-Rodríguez, J. A. Rayas, R. R. Cordero, A. Martínez-García, A. Martínez-Gonzalez, A. Téllez-Quiñones, P. Yañez-Contreras, and O. Medina-Cázares, “Dual-plane slightly off-axis digital holography based on a single cube beam splitter,” Appl. Opt. 57(10), 2727–2735 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

F. Wang, D. Wang, L. Rong, Y. Wang, and J. Zhao, “Single-shot dual-wavelength in-line and off-axis hybrid digital holography,” Appl. Phys. Lett. 112(9), 091903 (2018).
[Crossref]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[Crossref]

Biomed. Opt. Express (5)

Invest. Ophthalmol. Vis. Sci. (1)

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[Crossref] [PubMed]

J. A. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
[Crossref] [PubMed]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[Crossref] [PubMed]

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

J. Opt. (1)

R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, S. Yan, Y. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

F. Wang, D. Wang, S. Panezai, L. Rong, Y. Wang, and J. Zhao, “Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography,” Opt. Commun. 401, 59–65 (2017).
[Crossref]

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279(2), 235–239 (2007).
[Crossref]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting microscopic interferometry based on a cube beamsplitter,” Opt. Commun. 284(18), 4136–4140 (2011).
[Crossref]

B. Das, C. S. Yelleswarapu, and D. Rao, “Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter,” Opt. Commun. 285(24), 4954–5960 (2012).
[Crossref] [PubMed]

Opt. Express (22)

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[Crossref] [PubMed]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref] [PubMed]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22(12), 14929–14943 (2014).
[Crossref] [PubMed]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20(24), 26906–26912 (2012).
[Crossref] [PubMed]

Y. Yang, Z.-J. Cheng, H.-M. Zhao, Q.-Y. Yue, and C.-S. Guo, “Quantitative phase imaging system with slightly-off-axis configuration and suitable for objects both larger and smaller than the size of the image sensor,” Opt. Express 26(13), 17199–17208 (2018).
[Crossref] [PubMed]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[Crossref] [PubMed]

X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
[Crossref] [PubMed]

C. S. Guo, B. Y. Wang, B. Sha, Y. J. Lu, and M. Y. Xu, “Phase derivative method for reconstruction of slightly off-axis digital holograms,” Opt. Express 22(25), 30553–30558 (2014).
[Crossref] [PubMed]

M. Shan, M. E. Kandel, H. Majeed, V. Nastasa, and G. Popescu, “White-light diffraction phase microscopy at doubled space-bandwidth product,” Opt. Express 24(25), 29033–29039 (2016).
[Crossref] [PubMed]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref] [PubMed]

L. Orzó, “High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms,” Opt. Express 23(13), 16638–16649 (2015).
[Crossref] [PubMed]

T. D. Yang, H.-J. Kim, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24(9), 9480–9488 (2016).
[Crossref] [PubMed]

C. Tian and S. Liu, “Phase retrieval in two-shot phase-shifting interferometry based on phase shift estimation in a local mask,” Opt. Express 25(18), 21673–21683 (2017).
[Crossref] [PubMed]

T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21(12), 14747–14762 (2013).
[Crossref] [PubMed]

B. Sha, X. Liu, X.-L. Ge, and C.-S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22(19), 23066–23072 (2014).
[Crossref] [PubMed]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18(15), 15318–15331 (2010).
[Crossref] [PubMed]

F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
[Crossref] [PubMed]

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591–14600 (2007).
[Crossref] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[Crossref] [PubMed]

L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13(7), 2444–2452 (2005).
[Crossref] [PubMed]

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13(18), 6738–6749 (2005).
[Crossref] [PubMed]

Opt. Lasers Eng. (2)

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer,” Opt. Lasers Eng. 90, 155–160 (2017).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Lasers Eng. 97, 9–18 (2017).
[Crossref]

Opt. Lett. (19)

P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34(22), 3553–3555 (2009).
[Crossref] [PubMed]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010).
[Crossref] [PubMed]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
[Crossref] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[Crossref] [PubMed]

J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166 (2011).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

B. Bhaduri and G. Popescu, “Derivative method for phase retrieval in off-axis quantitative phase imaging,” Opt. Lett. 37(11), 1868–1870 (2012).
[Crossref] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “Aliasing, coherence, and resolution in a lensless holographic microscope,” Opt. Lett. 42(12), 2271–2274 (2017).
[Crossref] [PubMed]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39(6), 1525–1528 (2014).
[Crossref] [PubMed]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
[Crossref] [PubMed]

S. Karepov, N. T. Shaked, and T. Ellenbogen, “Off-axis interferometer with adjustable fringe contrast based on polarization encoding,” Opt. Lett. 40(10), 2273–2276 (2015).
[Crossref] [PubMed]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
[Crossref] [PubMed]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref] [PubMed]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[Crossref] [PubMed]

J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
[Crossref] [PubMed]

J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref] [PubMed]

Optom. Vis. Sci. (2)

J. Arines and E. Acosta, “Adaptive astigmatism-correcting device for eyepieces,” Optom. Vis. Sci. 88(12), 1524–1528 (2011).
[PubMed]

J. P. Foley and C. Campbell, “An optical device with variable astigmatic power,” Optom. Vis. Sci. 76(9), 664–667 (1999).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xu, J. Tian, and X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts,” Sci. Rep. 7(1), 44307 (2017).
[Crossref] [PubMed]

C. Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van Aken, and C. T. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4(1), 7020 (2014).
[Crossref] [PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Vision Res. (1)

G. J. Wang, O. Pomerantzeff, and M. M. Pankratov, “Astigmatism of oblique incidence in the human model eye,” Vision Res. 23(10), 1079–1085 (1983).
[Crossref] [PubMed]

Other (4)

P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherence light microscopy – Imaging and quantitative phase analysis (Springer, 2011).

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Oxford Academy, 2012).

G. G. Stokes, On a mode of measuring the astigmatism of a defective eye in Mathematical and Physical Papers (Cambridge University, 1883), Vol. 2, pp. 172–175.

Supplementary Material (3)

NameDescription
» Visualization 1       movie of the recorded set of single shot slightly off-axis holograms
» Visualization 2       movie representing the subtraction hologram derived from Eq. 3 in the paper
» Visualization 3       retrieved 3D unwrapped phase profile of the microbeads flowing into the counting chamber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of the proposed add-on module for single-shot SO-DHM in a regular non-holographic microscope. TL – tube lens, M – mirror, SL – Stokes lens, BS – beam splitter, P – linear polarizer, and CMOS – digital camera. A representative raytracing is included showing image duplication for the object ROI.
Fig. 2
Fig. 2 SL characterization based on a Risley prism mount: (a) the labmade SL composed by two regular cylindrical lenses of equal but opposite powers ( ± 1.50 D), and (b) the generated cylindrical (black plot), spherical (red plot) and spherical equivalent (blue plot) powers versus relative rotation between lenses. The black/white arrow in (a) represents, respectively, how the angle between lenses and the orientation of the generated astigmatism can be changed.
Fig. 3
Fig. 3 Astigmatism influence in a BS interferometer: (a) and (b) images obtained after BS inclusion in rotated position where vertical and horizontal bars of the test are focused respectively; (c) image free of astigmatism after the SL is inserted in the add-on module; and (d) direct image without the add-on module for comparison.
Fig. 4
Fig. 4 Recording sequence in the proposed single-shot SO-DHM method: (a) direct image without the add-on module, (b) astigmatic image generated by the BS, (c) astigmatism-free image using SL, and (d) the single-shot SO recorded hologram.
Fig. 5
Fig. 5 Comparison results between the proposed system (upper row labelled as 1) and the conventional Fourier filtering method (lower row labelled as 2). Each row includes: (a) the hologram, (b) its Fourier transform, (c) the filtered spatial-frequency pupil, (d) the retrieved intensity image, (e) the plot of the normalized intensity profile marked with the dashed white line in (d), (f) the retrieved phase distribution, and (g) the retrieved phase background image coming from the solid line white rectangle in (f) including the STD value.
Fig. 6
Fig. 6 Experimental results conducted on static biosamples: upper/central/lower rows are labelled as 1/2/3, respectively, and include PC-3/LnCaP/RWPE-1 cell lines, respectively. Each row includes: (a) the subtraction hologram (I1 – I2), (b) its Fourier transform, (c) the filtered spatial-frequency pupil, (d) the retrieved phase distribution, (e) the 3D plot of the unwrapped phase distribution included in (d), and (f) the same 3D view but considering the conventional Fourier filtering method. Black scale bars in (d) column are 100 μm.
Fig. 7
Fig. 7 Experimental results for dynamic microbeads: single frame analysis. Results coming from the proposed system are included in the upper row (labelled as 1) and the ones from conventional Fourier filtering method in the lower one (labelled as 2). Each row includes: (a) the hologram, (b) its Fourier transform, (c) the filtered spatial-frequency pupil, (d) the retrieved wrapped phase distribution, and (e) the 2D view of the unwrapped phase distribution included in (d). Black scale bars in (d)-(e) images are 100 μm.
Fig. 8
Fig. 8 Experimental results for dynamic microbeads: movie validation. (a) The recorded set of single-shot SO holograms with FOV multiplexing (see Visualization 1), (b) the movie from the subtraction holograms (see Visualization 2), and (c) the 3D view of the retrieved unwrapped phase distribution by single-shot SO-DHM (see Visualization 3). Black scale bars are 100 μm and insets show interferometric fringes for clarity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = 90 cos 1 ( t g 1 ( Δ 100 ) 2 ( n 1 ) α )
I 1 ( x , y ) = | O ( x , y ) | 2 + | R ( x , y ) | 2 + O ( x , y ) R * ( x , y ) + O * ( x , y ) R ( x , y ) I 2 ( x , y ) = | O ( x , y ) | 2 + | R ( x , y ) | 2 O ( x , y ) R * ( x , y ) O * ( x , y ) R ( x , y )
I 1 ( x , y ) I 2 ( x , y ) = 2 O ( x , y ) R * ( x , y ) + 2 O * ( x , y ) R ( x , y )

Metrics