Abstract

We report the development and characterisation of highly miniaturised fibre-optic sensors for simultaneous pressure and temperature measurement, and a compact interrogation system with a high sampling rate. The sensors, which have a maximum diameter of 250 µm, are based on multiple low-finesse optical cavities formed from polydimethylsiloxane (PDMS), positioned at the distal ends of optical fibres, and interrogated using phase-resolved low-coherence interferometry. At acquisition rates of 250 Hz, temperature and pressure changes of 0.0021 °C and 0.22 mmHg are detectable. An in vivo experiment demonstrated that the sensors had sufficient speed and sensitivity for monitoring dynamic physiological pressure waveforms. These sensors are ideally suited to various applications in minimally invasive surgery, where diminutive lateral dimensions, high sensitivity and low manufacturing complexities are particularly valuable.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing

Cheng Pang, Hyungdae Bae, Ashwani Gupta, Kenneth Bryden, and Miao Yu
Opt. Express 21(19) 21829-21839 (2013)

In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders

J. W. Arkwright, N. G. Blenman, I. D. Underhill, S. A. Maunder, M. M. Szczesniak, P. G. Dinning, and I. J. Cook
Opt. Express 17(6) 4500-4508 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
    [Crossref] [PubMed]
  2. E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
    [Crossref] [PubMed]
  3. R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
    [Crossref] [PubMed]
  4. C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
    [Crossref] [PubMed]
  5. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  6. G. Liu, Q. Sheng, W. Hou, and M. Han, “High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities,” Opt. Lett. 41(21), 5134–5137 (2016).
    [Crossref] [PubMed]
  7. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
    [Crossref]
  8. J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
    [Crossref]
  9. E. Cibula, S. Pevec, B. Lenardič, E. Pinét, and D. Ðonlagić, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
    [Crossref] [PubMed]
  10. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref] [PubMed]
  11. N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
    [Crossref]
  12. S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
    [Crossref]
  13. N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
    [Crossref]
  14. S. Pevec and D. Ðonlagić, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51(19), 4536–4541 (2012).
    [Crossref] [PubMed]
  15. E. Cibula and D. Ðonlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [Crossref] [PubMed]
  16. G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
    [Crossref]
  17. Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
    [Crossref]
  18. X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  19. J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
    [Crossref]
  20. M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
    [Crossref]
  21. Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang, and Y. Wang, “High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer,” J. Lightwave Technol. 35(18), 4067–4071 (2017).
    [Crossref]
  22. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
    [Crossref] [PubMed]
  23. J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
    [Crossref] [PubMed]
  24. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  25. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]
  26. X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
    [Crossref]
  27. V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
    [Crossref]
  28. D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
    [Crossref] [PubMed]
  29. D. A. Singlehurst, C. R. Dennison, and P. M. Wild, “A distributed pressure measurement system comprising multiplexed in-fibre Bragg gratings within a flexible superstructure,” J. Lightwave Technol. 30(1), 123–129 (2012).
    [Crossref]
  30. I. L. Bundalo, R. Lwin, S. Leon-Saval, and A. Argyros, “All-plastic fiber-based pressure sensor,” Appl. Opt. 55(4), 811–816 (2016).
    [Crossref] [PubMed]
  31. Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
    [Crossref]
  32. J. E. Mark, Polymer Data Handbook (Oxford University, 2009).
  33. K. Scholten and E. Meng, “Materials for microfabricated implantable devices: a review,” Lab Chip 15(22), 4256–4272 (2015).
    [Crossref] [PubMed]
  34. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
    [Crossref]
  35. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  36. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [Crossref] [PubMed]
  37. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  38. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).
    [Crossref] [PubMed]
  39. E. Hecht, Optics (Pearson, 2017).
  40. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).
  41. J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
    [Crossref] [PubMed]
  42. S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
    [Crossref]
  43. P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).
  44. R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
    [Crossref] [PubMed]
  45. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
    [Crossref]
  46. Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
    [Crossref] [PubMed]

2018 (3)

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

2017 (3)

2016 (6)

I. L. Bundalo, R. Lwin, S. Leon-Saval, and A. Argyros, “All-plastic fiber-based pressure sensor,” Appl. Opt. 55(4), 811–816 (2016).
[Crossref] [PubMed]

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

G. Liu, Q. Sheng, W. Hou, and M. Han, “High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities,” Opt. Lett. 41(21), 5134–5137 (2016).
[Crossref] [PubMed]

2015 (7)

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
[Crossref] [PubMed]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

K. Scholten and E. Meng, “Materials for microfabricated implantable devices: a review,” Lab Chip 15(22), 4256–4272 (2015).
[Crossref] [PubMed]

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

2014 (4)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

2013 (1)

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

2012 (5)

2011 (1)

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

2009 (2)

E. Cibula, S. Pevec, B. Lenardič, E. Pinét, and D. Ðonlagić, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[Crossref] [PubMed]

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

2008 (1)

2007 (2)

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

2006 (1)

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

2005 (5)

2000 (1)

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

1999 (1)

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Agrawal, A.

Akkin, T.

Alles, E. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Argyros, A.

Ashworth, M.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bae, H.

Bai, Z.

Bao, X.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Barringhaus, K.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Bartels, K.

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
[Crossref] [PubMed]

Beard, P. C.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bertazzo, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Bondar, V. I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Bouma, B. E.

Braschi, G.

Bundalo, I. L.

Cabrera, L. M.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Cense, B.

Chan, I. H.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Chen, C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, L.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Chen, Q. D.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, Y.

Chester, A. H.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Choi, E. S.

Choi, H. Y.

Choma, M. A.

Chung, E.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

Cibula, E.

Cigada, A.

Colchester, R. J.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Cooper, K. L.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

Cottler, P. S.

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

Creazzo, T. L.

Cunha, J. P. S.

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

Daemen, J.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Davenport, A. A.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

David, A. L.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

de Boer, J. F.

de Jaegere, P. P. T.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Declercq, F. E.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Deng, Y.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Dennison, C. R.

Dernellis, J.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Desjardins, A. E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Diamantopoulos, L.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Diletti, R.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Dong, N.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Ðonlagic, D.

Duraibabu, D.

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

Ellerbee, A. K.

Eom, J.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Everaert, B. R. C.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Feng, Z.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Freeman, B. D.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Futai, N.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Gallati, M.

Gan, T. J.

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
[Crossref] [PubMed]

Gao, R.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

Geng, Y.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Guo, K.

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Han, M.

Hartwell, P. G.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

He, J.

Hecht, E.

E. Hecht, Optics (Pearson, 2017).

Heo, Y. S.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Hill, G. C.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Hou, M.

Hou, W.

Hu, M.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Huang, X.

Izatt, J. A.

Jiang, L.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Jiang, Y.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Johnston, I. D.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Joo, C.

Jorge, P. A. S.

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

Kalli, K.

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

Kapur, P.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

Karanasos, A.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Karpen, W. R.

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

Kaufman, K. R.

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

Kim, T.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Kwon, I. B.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

Lacraz, A.

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

Latif, N.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Lee, B. H.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

Lee, J. H.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

Leen, G.

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Lenardic, B.

Leon-Saval, S.

Lewis, E.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Li, C.

Li, M.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

Li, X.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Li, Y.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

Li, Z.

Liao, C.

Liu, G.

Liu, H.

Liu, S.

Liu, Y.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Lu, L.

Lu, P.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Lu, W.

Lwin, R.

Ma, J.

Macchi, E. G.

Maneas, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

McCluskey, D. K.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

McGrath, D.

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

Melamud, R.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Meng, E.

K. Scholten and E. Meng, “Materials for microfabricated implantable devices: a review,” Lab Chip 15(22), 4256–4272 (2015).
[Crossref] [PubMed]

Merkel, T. C.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Mishra, V.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

Morrow, D. A.

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

Mujat, M.

Nagai, K.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Nehmetallah, G.

Noimark, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Olson, D. A.

Ourselin, S.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Paek, U. C.

Paiva, J. S.

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

Papakonstantinou, I.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Park, B. H.

Park, C. J.

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

Park, K. S.

Park, S. J.

Parkin, I. P.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Pevec, S.

Pfefer, T. J.

Pickrell, G. R.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

Pierce, M. C.

Pinét, E.

Pinnau, I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Poduval, R. K.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Poeggel, S.

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

Pruitt, B. L.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Qiao, X.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Qu, J.

Qu, S.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

Regar, E.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Ren, D.

Rong, Q.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Rosa, C. C.

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

Rossi, S.

Saccomandi, P.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Schena, E.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Scholten, K.

K. Scholten and E. Meng, “Materials for microfabricated implantable devices: a review,” Lab Chip 15(22), 4256–4272 (2015).
[Crossref] [PubMed]

Sheng, Q.

Shi, X.

Singh, N.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

Singlehurst, D. A.

Smith, G. D.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Song, J. W.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Stefanadi, E.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Stefanadis, C.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Sun, B.

Sun, H.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Sun, H. B.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Takayama, S.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Tan, C. K. L.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Tan, X.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Tang, J.

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).

Tearney, G. J.

Thiele, R. H.

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
[Crossref] [PubMed]

Tian, Y.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Tiwari, U.

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

Tomlins, P. H.

Tosi, D.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

Toutouzas, K.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Toutouzas, P.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Tracey, M. C.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Tsiamis, E.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Tsolaki, E.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Tung, Y.-C.

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Valgimigli, M.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

van Geuns, R. J. M.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Van Mieghem, N. M.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Vlachopoulos, C.

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Wang, A.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

Wang, L.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, P.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Wang, S.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Wang, W.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, X.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

Wang, Y.

Wild, P. M.

Woolliams, P. D.

Wu, N.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Xu, F.

Xu, J.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

Xu, Y.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Xue, Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yang, C.

Yang, R.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yin, G.

Yin, Z.

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Yu, B.

Yu, M.

Yu, Y. S.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yun, D.

Yun, S.-H.

Zhai, Y.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Zhang, E. Z.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zhang, F.

Zhang, J.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Zhang, L.

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhang, Z.

Zhao, M.

Zhao, T.

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Zhao, X.

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

Zhou, J.

Zhu, C. C.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zijlstra, F.

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Zou, X.

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Adv. Funct. Mater. (1)

S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas, E. J. Alles, T. Zhao, E. Z. Zhang, M. Ashworth, E. Tsolaki, A. H. Chester, N. Latif, S. Bertazzo, A. L. David, S. Ourselin, P. C. Beard, I. P. Parkin, I. Papakonstantinou, and A. E. Desjardins, “Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging,” Adv. Funct. Mater. 28(9), 1704919 (2018).
[Crossref]

Anal. Chem. (1)

Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y.-C. Tung, G. D. Smith, and S. Takayama, “Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices,” Anal. Chem. 79(3), 1126–1134 (2007).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

P. S. Cottler, W. R. Karpen, D. A. Morrow, and K. R. Kaufman, “Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications,” Ann. Biomed. Eng. 37(8), 1638–1645 (2009).

Appl. Opt. (3)

Biochim. Biophys. Acta, Gen. Subj. (1)

J. S. Paiva, P. A. S. Jorge, C. C. Rosa, and J. P. S. Cunha, “Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation,” Biochim. Biophys. Acta, Gen. Subj. 1862(5), 1209–1246 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Circulation (1)

C. Stefanadis, L. Diamantopoulos, C. Vlachopoulos, E. Tsiamis, J. Dernellis, K. Toutouzas, E. Stefanadi, and P. Toutouzas, “Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter,” Circulation 99(15), 1965–1971 (1999).
[Crossref] [PubMed]

Crit. Care Med. (1)

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary assessment and review,” Crit. Care Med. 43(1), 177–185 (2015).
[Crossref] [PubMed]

EuroIntervention (1)

R. Diletti, N. M. Van Mieghem, M. Valgimigli, A. Karanasos, B. R. C. Everaert, J. Daemen, R. J. M. van Geuns, P. P. T. de Jaegere, F. Zijlstra, and E. Regar, “Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve,” EuroIntervention 11(4), 428–432 (2015).
[Crossref] [PubMed]

Fibers (Basel) (1)

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Tan, X. Li, Y. Geng, Z. Yin, L. Wang, W. Wang, and Y. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

N. Dong, S. Wang, L. Jiang, Y. Jiang, P. Wang, and L. Zhang, “Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry-Pérot fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 18(10), 1134–1136 (2006).
[Crossref]

IEEE Sens. J. (1)

S. Poeggel, D. Duraibabu, A. Lacraz, K. Kalli, D. Tosi, G. Leen, and E. Lewis, “Femtosecond-laser-based inscription technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure sensor,” IEEE Sens. J. 16(10), 3396–3402 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Micromech. Microeng. (2)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[Crossref]

J. Opt. (1)

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Lab Chip (1)

K. Scholten and E. Meng, “Materials for microfabricated implantable devices: a review,” Lab Chip 15(22), 4256–4272 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Sens. Actuators A Phys. (3)

V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys. 167(2), 279–290 (2011).
[Crossref]

J. Eom, C. J. Park, B. H. Lee, J. H. Lee, I. B. Kwon, and E. Chung, “Fiber optic Fabry–Perot pressure sensor based on lensed fiber and polymeric diaphragm,” Sens. Actuators A Phys. 225, 25–32 (2015).
[Crossref]

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Sens. Actuators B Chem. (2)

M. Li, Y. Liu, R. Gao, Y. Li, X. Zhao, and S. Qu, “Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
[Crossref]

N. Wu, Y. Tian, X. Zou, Y. Zhai, K. Barringhaus, and X. Wang, “A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model,” Sens. Actuators B Chem. 181, 172–178 (2013).
[Crossref]

Sensors (Basel) (2)

S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors (Basel) 15(7), 17115–17148 (2015).
[Crossref] [PubMed]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Other (3)

E. Hecht, Optics (Pearson, 2017).

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1997).

J. E. Mark, Polymer Data Handbook (Oxford University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sensor element construction and geometry, showing the fibre-dome surface distance z1 and fibre-membrane inner surface distance z2. (b) Incident light is reflected from the cleaved fibre end, the dome outer surface and the membrane inner surface; it propagates back along the fibre, and the resulting spectral interference pattern (not shown) depends on the distances z1 and z2. The variation in the distance z1 depends only on temperature, and the variation in the distance z2 depends on both temperature and pressure, i.e. Δz1(P,T) = Δz1(T) and Δz2(P,T) = Δz2(P) + Δz2(T).
Fig. 2
Fig. 2 Schematic diagram of the optical sensor interrogation setup; SLED: superluminescent light emitting diode; A: attenuator; FC: 50:50 fibre-optic coupler; UB: unused branch; FOC: fibre-optic connector; SF: sensor fibre; SE: sensor element; PC: personal computer. The components integrated into the portable unit are shown enclosed by the dashed box.
Fig. 3
Fig. 3 Examples of the raw and processed signals: (a) raw intensity spectrum versus wavelength; the spectrum is resampled so that it is linear in wavenumber prior to inverse Fourier transformation; (b) magnitude of the inverse Fourier-transformed spectrum (on a logarithmic scale) with peaks corresponding to z1 and z2z1 labelled; z′ has been converted to z by taking n = 1; ϕ1 and ϕ2 are obtained using the complex argument of the inverse Fourier-transformed spectrum at distance axis locations z1′ and z2′-z1′ .
Fig. 4
Fig. 4 (a) – (d): Simultaneous pressure and temperature measurement during pressure cycling with a temperature change; (a) sensor signals as acquired; the inset shows an enlarged view of the region indicated by the dashed box; (b) calibrated temperature measurements and reference thermocouple measurements; (c) calibrated pressure measurements and reference pressure transducer measurements; (d) calibrated pressure measurements and reference pressure transducer measurements at a later time, showing a discrepancy of approximately 15 mmHg between the calibrated pressure measurements and reference pressure transducer measurements due to drift. (e) – (h): Simultaneous pressure and temperature measurements with a temperature ramp at constant pressure; (e) acquired sensor signals: ϕ1 (upper subplot) and ϕ2 (lower subplot); (f) calibrated temperature measurements and reference thermocouple measurements; (g) calibrated pressure measurements and reference pressure transducer measurements; (h) calibrated pressure measurements and reference pressure transducer measurements at a later time, showing a discrepancy of approximately 3 mmHg due to drift.
Fig. 5
Fig. 5 In vivo study: (a) Diagram of the ewe heart showing approximate position of the catheter in the right carotid artery; (b) relative temperature and pressure measurements (referenced to start time t0) acquired in real time in the carotid artery, with the pressure signal varying in response to arterial pressure waves with modulation due to respiration. The temperature signal is unaffected by pressure changes but gradually increases over time; (c) diagram showing approximate position of the catheter in the left ventricle; (d) relative temperature and pressure measurements acquired in real time from the left ventricle, with the temperature signal unchanging and the pressure signal responding to ventricular pressure, with modulation due to respiration.

Tables (1)

Tables Icon

Table 1 Sensor characteristics

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(k)=S(k)[ R 1 + R 2 +2 R 1 R 2 cos(2πk z )],
k z =k( z 0 +Δ z )=k z 0 + k 0 Δ z +ΔkΔ z k z 0 + k 0 Δ z .
1 [I(k)]( z )= 1 [S(k)]( z ) 2π {( R 1 + R 2 )δ( z ) + R 1 R 2 [δ( z z 0 )exp( i2π k 0 Δ z )+δ( z + z 0 )exp( i2π k 0 Δ z )]},
ϕ(t t 0 )arg{ 1 [I(k)](+ z 0 )}=2π k 0 Δ z (t t 0 ),
[ ϕ 1 ϕ 2 ]=[ m 1T m 1P m 2T m 2P ][ T(t t 0 ) P(t t 0 ) ],
σ ϕj = (SNR) 1/2 ,
SNR=20log( 1 [I(k)]( z j ) σ bg ),

Metrics