Abstract

For deep-sea natural gas hydrate exploration, highly sensitive detection of the dissolved gas in seawater near the seabed is significant because it requires the sensor system to be small in size, low in power consumption, and high in sensitivity. A mid-infrared sensor system was developed to detect dissolved carbon dioxide (CO2) in sea-water, while employing a 4319 nm continuous-wave interband cascade laser (ICL) and a multi-pass gas cell (MPGC) with a 29.8 m optical path length. A compact rectilinear optical structure was proposed by using the free-space-emitting ICL and tunable laser absorption spectroscopy (TLAS). This leads to a minimized sensor size and a simple optical alignment for deep-sea operation. A strong CO2 absorption line, located at 2315.19 cm−1 and a weak 2315.28 cm−1 line and at a low pressure of 40 Torr, was targeted for low- and high-concentration CO2 detection within a concentration range of 0-1000 parts per billion by volume (ppbv) and 0-40 parts per million by volume (ppmv), respectively. The limit of detection (LoD) was assessed to be 0.72 ppbv at an averaging time of 2 s, and the response time was measured to be ~30 s at a flow rate of ~180 standard cubic centimeters per minute (sccm). Deployment of the CO2 sensor combined with a gas-liquid separator was carried out for the CO2 detection in the gas extracted from water, which validated the reported sensor system’s potential application for deep-sea natural gas hydrate exploration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes

Ramin Ghorbani and Florian M. Schmidt
Opt. Express 25(11) 12743-12752 (2017)

Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS)

Fang Song, Chuantao Zheng, Wanhong Yan, Weilin Ye, Yiding Wang, and Frank K. Tittel
Opt. Express 25(25) 31876-31888 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. U. Haq, “Natural gas deposits: methane in the deep blue sea,” Science 285(5427), 543–544 (1999).
    [Crossref]
  2. M. Parlaktuna and T. Erdogmus, “Natural gas hydrate potential of the black sea,” Energy Sources 23, 203–211 (2010).
  3. J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
    [Crossref]
  4. J. W. Swinnerton and V. J. Linnenbom, “Gaseous hydrocarbons in sea water: determination,” Science 156(3778), 1119–1120 (1967).
    [Crossref] [PubMed]
  5. L. P. Atkinson and F. A. Richards, “The occurence and distribution of methane in the marine environment,” Deep-Sea Res. Oceanogr. Abstr. 14(6), 673–684 (1967).
    [Crossref]
  6. W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).
  7. S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
    [Crossref]
  8. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
    [Crossref] [PubMed]
  9. D. G. Lancaster and J. M. Dawes, “Methane detection with a narrow-band source at 34 μm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing,” Appl. Opt. 35(21), 4041–4045 (1996).
    [Crossref] [PubMed]
  10. C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B 75(2–3), 305–310 (2002).
    [Crossref]
  11. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
    [Crossref]
  12. K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
    [Crossref]
  13. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
    [Crossref] [PubMed]
  14. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
    [Crossref]
  15. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
    [Crossref] [PubMed]
  16. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
    [Crossref] [PubMed]
  17. M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
    [Crossref] [PubMed]
  18. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
    [Crossref]
  19. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
    [Crossref]
  20. M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
    [Crossref]
  21. R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
    [Crossref]
  22. R. Q. Yang, “Mid-infrared interband cascade lasers based on type-II heterostructures,” Microelectronics J. 30(10), 1043–1056 (1999).
    [Crossref]
  23. J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
    [Crossref]
  24. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
    [Crossref]
  25. C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
    [Crossref]
  26. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
    [Crossref] [PubMed]
  27. Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
    [Crossref]
  28. D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37(12), 2499–2501 (1998).
    [Crossref] [PubMed]
  29. H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

2018 (1)

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

2017 (1)

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

2016 (1)

2014 (1)

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

2010 (2)

M. Parlaktuna and T. Erdogmus, “Natural gas hydrate potential of the black sea,” Energy Sources 23, 203–211 (2010).

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

2009 (1)

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

2008 (2)

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

2007 (2)

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).

2006 (1)

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

2005 (1)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
[Crossref]

2003 (1)

2002 (1)

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B 75(2–3), 305–310 (2002).
[Crossref]

2000 (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

1999 (4)

B. U. Haq, “Natural gas deposits: methane in the deep blue sea,” Science 285(5427), 543–544 (1999).
[Crossref]

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

R. Q. Yang, “Mid-infrared interband cascade lasers based on type-II heterostructures,” Microelectronics J. 30(10), 1043–1056 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

1998 (3)

D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37(12), 2499–2501 (1998).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

1997 (1)

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

1996 (1)

1992 (1)

1967 (2)

J. W. Swinnerton and V. J. Linnenbom, “Gaseous hydrocarbons in sea water: determination,” Science 156(3778), 1119–1120 (1967).
[Crossref] [PubMed]

L. P. Atkinson and F. A. Richards, “The occurence and distribution of methane in the marine environment,” Deep-Sea Res. Oceanogr. Abstr. 14(6), 673–684 (1967).
[Crossref]

1962 (1)

J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
[Crossref]

Ajtai, T.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

Arbore, M.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Assefa, Z.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Atkinson, L. P.

L. P. Atkinson and F. A. Richards, “The occurence and distribution of methane in the marine environment,” Deep-Sea Res. Oceanogr. Abstr. 14(6), 673–684 (1967).
[Crossref]

Bakhirkin, Y.

Bakhirkin, Y. A.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

Begashaw, I.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Bililign, S.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Bomse, D. S.

Bradshaw, J. L.

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Bruno, J. D.

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Burruss, R. C.

W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Cheek, C.

J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
[Crossref]

Chen, C.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

Chen, W. L.

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Chou, I. M.

W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).

Collingwood, M. S.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Cui, H. X.

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

Dawes, J. M.

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Dong, L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Du, Z. H.

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Erdogmus, T.

M. Parlaktuna and T. Erdogmus, “Natural gas hydrate potential of the black sea,” Energy Sources 23, 203–211 (2010).

Fejer, M. M.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Fiddler, M. N.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Fischer, C.

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B 75(2–3), 305–310 (2002).
[Crossref]

Fraser, M. P.

Gibert, D.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Gluszek, A. K.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Griffin, R. J.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Guan, Z. G.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Haq, B. U.

B. U. Haq, “Natural gas deposits: methane in the deep blue sea,” Science 285(5427), 543–544 (1999).
[Crossref]

Hill, C. J.

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

Hollberg, L. W.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Hudzikowski, A. J.

Ker, S.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
[Crossref]

Lancaster, D. G.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

D. G. Lancaster and J. M. Dawes, “Methane detection with a narrow-band source at 34 μm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing,” Appl. Opt. 35(21), 4041–4045 (1996).
[Crossref] [PubMed]

Le Gonidec, Y.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Lewander, M.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Li, C.

Li, C. G.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Limpert, J.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Linnenbom, V.

J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
[Crossref]

Linnenbom, V. J.

J. W. Swinnerton and V. J. Linnenbom, “Gaseous hydrocarbons in sea water: determination,” Science 156(3778), 1119–1120 (1967).
[Crossref] [PubMed]

Liu, Z. W.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

Lv, W. J.

W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).

Marsset, B.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Mickens, M. A.

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Miller, J. H.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

Minshull, T. A.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Neu, W.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

Oh, D. B.

Olsson, A.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Paige, M. E.

Parlaktuna, M.

M. Parlaktuna and T. Erdogmus, “Natural gas hydrate potential of the black sea,” Energy Sources 23, 203–211 (2010).

Persson, L.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Petrov, K. P.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Pham, J. T.

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Qi, R. B.

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Ren, Q.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

Richards, F. A.

L. P. Atkinson and F. A. Richards, “The occurence and distribution of methane in the marine environment,” Deep-Sea Res. Oceanogr. Abstr. 14(6), 673–684 (1967).
[Crossref]

Richter, D.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

Robert, P.

Sanchez, N. P.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

Schilt, S.

Sigrist, M. W.

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B 75(2–3), 305–310 (2002).
[Crossref]

Silver, J. A.

So, S.

Svanberg, S.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Swinnerton, J.

J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
[Crossref]

Swinnerton, J. W.

J. W. Swinnerton and V. J. Linnenbom, “Gaseous hydrocarbons in sea water: determination,” Science 156(3778), 1119–1120 (1967).
[Crossref] [PubMed]

Thévenaz, L.

Tittel, F. K.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
[Crossref]

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Waltman, S.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

Wang, Y. D.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Weidner, R.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Westbrook, G. K.

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Wortman, D. E.

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
[Crossref]

Xie, H. T.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

Xu, K. X.

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Yang, R. Q.

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46(33), 8202–8210 (2007).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

R. Q. Yang, “Mid-infrared interband cascade lasers based on type-II heterostructures,” Microelectronics J. 30(10), 1043–1056 (1999).
[Crossref]

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Ye, W.

Ye, W. L.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Zheng, C.

Zheng, C. T.

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Anal. Chem. (1)

J. Swinnerton, V. Linnenbom, and C. Cheek, “Determination of dissolved gases in aqueous solutions by gas chromatography,” Anal. Chem. 34(4), 483–485 (1962).
[Crossref]

Anal. Methods (1)

Z. W. Liu, C. T. Zheng, C. Chen, H. T. Xie, Q. Ren, W. L. Ye, Y. D. Wang, and F. K. Tittel, “A near-infrared carbon dioxide sensor system using a compact folded optical structure for deep-sea natural gas hydrate exploration,” Anal. Methods 10(39), 4838–4844 (2018).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (6)

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B 75(2–3), 305–310 (2002).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67(3), 347–350 (1998).
[Crossref]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B 64(5), 567–572 (1997).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80(4-5), 617–625 (2005).
[Crossref]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2–3), 391–396 (2006).
[Crossref]

Appl. Phys. Lett. (1)

J. L. Bradshaw, R. Q. Yang, J. D. Bruno, J. T. Pham, and D. E. Wortman, “High-efficiency interband cascade lasers with peak power exceeding 4W/facet,” Appl. Phys. Lett. 75(16), 2362–2364 (1999).
[Crossref]

Chem. Phys. Lett. Front. Artic. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. Front. Artic. 487(1-3), 1–18 (2010).
[Crossref]

Deep-Sea Res. Oceanogr. Abstr. (1)

L. P. Atkinson and F. A. Richards, “The occurence and distribution of methane in the marine environment,” Deep-Sea Res. Oceanogr. Abstr. 14(6), 673–684 (1967).
[Crossref]

Electron. Lett. (1)

R. Q. Yang, J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman, “High power interband cascade lasers with quantum efficiency >450%,” Electron. Lett. 35(15), 1254–1255 (1999).
[Crossref]

Energy Sources (1)

M. Parlaktuna and T. Erdogmus, “Natural gas hydrate potential of the black sea,” Energy Sources 23, 203–211 (2010).

Geochim. Cosmochim. Acta (1)

W. J. Lv, I. M. Chou, and R. C. Burruss, “Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase in situ Raman spectroscopy,” Geochim. Cosmochim. Acta 72(2), 412–422 (2007).

Geophys. J. Int. (1)

S. Ker, Y. Le Gonidec, B. Marsset, G. K. Westbrook, D. Gibert, and T. A. Minshull, “Fine-scale gas distribution in marine sediments assessed from deep-towed seismic data,” Geophys. J. Int. 196(3), 1466–1470 (2014).
[Crossref]

Lasers Eng. (1)

H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, and K. X. Xu, “Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration,” Lasers Eng. 18, 263–270 (2008).

Microelectronics J. (1)

R. Q. Yang, “Mid-infrared interband cascade lasers based on type-II heterostructures,” Microelectronics J. 30(10), 1043–1056 (1999).
[Crossref]

Opt. Commun. (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Science (2)

B. U. Haq, “Natural gas deposits: methane in the deep blue sea,” Science 285(5427), 543–544 (1999).
[Crossref]

J. W. Swinnerton and V. J. Linnenbom, “Gaseous hydrocarbons in sea water: determination,” Science 156(3778), 1119–1120 (1967).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Sensors (Basel) (1)

M. N. Fiddler, I. Begashaw, M. A. Mickens, M. S. Collingwood, Z. Assefa, and S. Bililign, “Laser spectroscopy for atmospheric and environmental sensing,” Sensors (Basel) 9(12), 10447–10512 (2009).
[Crossref] [PubMed]

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) CAD image of the proposed rectilinear optical structure with a cubic volume of 48 × 19 × 13.5 cm3. (b) Schematic of the alignment procedure of the compact optical structure. (c) Photograph of the established rectilinear optical structure with a reference cell filled with N2 placed between the ICL and the MPGC. The spot pattern in the MPGC is shown by the insert in Fig. 1(c). ICL: interband cascade laser; M1, M2: plane mirror; MPGC: multi-pass gas cell; MCT: mercury-cadmium-telluride detector.
Fig. 2
Fig. 2 (a) HITRAN based absorption spectra of CO2 (1 ppmv) and H2O (2%) at a pressure of 40 Torr and an optical length of 30 m and CO2 (400 ppmv) at a pressure of 1 atm and an optical length of 8 cm, which are shown in black, blue and red, respectively, at 23 °C. (b) Plot of the ICL emission wavenumber as a function of the ICL drive current at a laser operation temperature of 0 °C. (c) Output signal from the detector indicating a comprehensive absorption at high pressure (background) and low pressure (target).
Fig. 3
Fig. 3 (a) Schematic diagram of the mid-infrared CO2 sensor system including an electrical sub-system and an optical sub-system. (b) CAD image of the barrel-shape equipment for the sensor integration with a diameter of 24.5 cm and a length of 50 cm. (c) Photograph of the integrated sensor system without the shield.
Fig. 4
Fig. 4 (a) Modulation depth optimization performed at a CO2 concentration level of 1 ppmv considering the background absorption. (b) The distorted 2f waveform with a modulation depth of 0.06 cm−1 and a polynomial background fitting. (c) Modulation depth optimization performed with the background absorption removed. (d) The non-distorted 2f waveform obtained with an optimized modulation depth of 0.009 cm−1.
Fig. 5
Fig. 5 (a) The recorded 2f signal and curves of the 2f-amplitude for eight different CO2 concentration levels of 1000, 800, 600, 400, 200, 100, 50 and 0 ppbv. (b) Measured data dots and linear fitting curve of the CO2 concentration versus 2f signal amplitude.
Fig. 6
Fig. 6 (a) Recorded 2f signal of one scan period at the CO2 concentration level of 20 ppmv. (b) Experimental measured data and linear fitting curve of CO2 concentration versus max(2f) based on the 2315.28 cm−1 absorption line.
Fig. 7
Fig. 7 (a) Long-term concentration measurement of CO2 by passing pure N2 into the gas cell. (b) Allan deviation analysis of the sensor based on the data shown in Fig. 7(a).
Fig. 8
Fig. 8 (a) Schematic diagram of the dual-stream gas flow path for the response time assessment of the sensor. (b) Response time measurements by switching the two gas samples repeatedly.
Fig. 9
Fig. 9 (a) Schematic diagram and (b) photograph of the sensor system for the deployment in the detection of the dissolved CO2 in water assisted by a gas-liquid separator and carrier gas.
Fig. 10
Fig. 10 Measured concentration levels of CO2 in the gas cell (represented by blue plots) and correspondingly deduced concentration levels of CO2 extracted from water (represented by red plots) during the deployment of the sensor combined with a gas-liquid separator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(υ)= I 0 ·exp[ α 1 (υ) C 1 L 1 ]·exp[ α 2 (υ) C 2 L 2 ]
C=1029.36731max(2f)+0.12942
C=5.07786max(2f)+0.01141

Metrics