Abstract

We propose an ultra-broadband and ultra-compact polarization rotator (PR) structure on the silicon-on-insulator platform. The subwavelength gratings (SWGs) are introduced at the waveguide corner in order to excite the hybridized modes and realize the polarization rotation. The dispersion-engineered SWG can dramatically reduce the polarization conversion length deviation. High polarization extinction ratio > 20 dB and low excess loss < 1 dB can be achieved over 1.26-1.675 μm wavelength range, which covers O-, E-, S-, C-, L-, and U-bands. The total device size is as small as 4.8 × 0.34 μm2. To the best of our knowledge, the proposed structure is the first silicon PR that could cover all of the optical communication bands.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide

Hongnan Xu and Yaocheng Shi
Opt. Express 25(15) 18485-18491 (2017)

Highly efficient silicon optical polarization rotators based on mode order conversions

Daigao Chen, Xi Xiao, Lei Wang, Wen Liu, Qi Yang, and Shaohua Yu
Opt. Lett. 41(5) 1070-1073 (2016)

Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides

Hongnan Xu and Yaocheng Shi
Opt. Lett. 42(4) 771-774 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
    [Crossref]
  2. H. Xu and Y. Shi, “Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure,” Opt. Lett. 42(24), 5202–5205 (2017).
    [Crossref] [PubMed]
  3. X. Chen, W. Liu, Y. Zhang, and Y. Shi, “Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers,” Opt. Lett. 42(19), 3738–3740 (2017).
    [Crossref] [PubMed]
  4. L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
    [Crossref] [PubMed]
  5. D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
    [Crossref]
  6. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  7. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]
  8. H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
    [Crossref] [PubMed]
  9. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]
  10. C.-C. Huang, “Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures,” Sci. Rep. 8(1), 17338 (2018).
    [Crossref] [PubMed]
  11. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  12. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  13. H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).
    [Crossref] [PubMed]
  14. H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
    [Crossref] [PubMed]
  15. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  16. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  17. Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
    [Crossref] [PubMed]
  18. Y. Xu and J. Xiao, “Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides,” Appl. Opt. 55(3), 611–618 (2016).
    [Crossref] [PubMed]
  19. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747 (2008).
    [Crossref]
  20. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
    [Crossref]
  21. S. Wu and J. Xiao, “Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings,” Appl. Opt. 56(17), 4892–4899 (2017).
    [Crossref] [PubMed]
  22. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  23. K. Tan, Y. Huang, G.-Q. Lo, C. Lee, and C. Yu, “Compact highly-efficient polarization splitter and rotator based on 90° bends,” Opt. Express 24(13), 14506–14512 (2016).
    [Crossref] [PubMed]
  24. Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
    [Crossref] [PubMed]
  25. H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach-Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
    [Crossref] [PubMed]
  26. J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
    [Crossref] [PubMed]
  27. S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23(10), 12840–12849 (2015).
    [Crossref] [PubMed]
  28. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  29. R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
    [Crossref]
  30. R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
    [Crossref]
  31. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
    [Crossref] [PubMed]
  32. D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
    [Crossref] [PubMed]
  33. Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
    [Crossref]
  34. C. Gu and P. Yeh, “Form birefringence dispersion in periodic layered media,” Opt. Lett. 21(7), 504–506 (1996).
    [Crossref] [PubMed]
  35. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  36. S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.33.
    [Crossref]
  37. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [Crossref]

2018 (5)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
[Crossref]

C.-C. Huang, “Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures,” Sci. Rep. 8(1), 17338 (2018).
[Crossref] [PubMed]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach-Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref] [PubMed]

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

2017 (8)

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

S. Wu and J. Xiao, “Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings,” Appl. Opt. 56(17), 4892–4899 (2017).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[Crossref] [PubMed]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure,” Opt. Lett. 42(24), 5202–5205 (2017).
[Crossref] [PubMed]

X. Chen, W. Liu, Y. Zhang, and Y. Shi, “Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers,” Opt. Lett. 42(19), 3738–3740 (2017).
[Crossref] [PubMed]

2016 (6)

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides,” Appl. Opt. 55(3), 611–618 (2016).
[Crossref] [PubMed]

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
[Crossref] [PubMed]

K. Tan, Y. Huang, G.-Q. Lo, C. Lee, and C. Yu, “Compact highly-efficient polarization splitter and rotator based on 90° bends,” Opt. Express 24(13), 14506–14512 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

2015 (2)

S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23(10), 12840–12849 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (4)

2011 (4)

2010 (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

2008 (2)

2006 (1)

1996 (1)

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Alonso-Ramos, C.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Benedikovic, D.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Berciano, M.

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bogaerts, W.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Cassan, E.

Cheben, P.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Chen, L.

Chen, S.

Chen, X.

Chen, Y.-K.

Chrostowski, L.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Dai, D.

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
[Crossref]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
[Crossref] [PubMed]

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
[Crossref] [PubMed]

S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23(10), 12840–12849 (2015).
[Crossref] [PubMed]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747 (2008).
[Crossref]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

Deng, Q.

Ding, Y.

Doerr, C. R.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Fedeli, J.-M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Fukuda, H.

Gu, C.

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Halir, R.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

He, S.

Huang, C.-C.

C.-C. Huang, “Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures,” Sci. Rep. 8(1), 17338 (2018).
[Crossref] [PubMed]

Huang, Y.

Hvam, J. M.

Itabashi, S.

Jafari, Z.

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Janz, S.

Kwong, D. L.

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Le Roux, X.

Lee, C.

Liang, D.

Liu, L.

Liu, W.

Lo, G. Q.

Lo, G.-Q.

Luque-González, J.

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Maese-Novo, A.

Marris-Morini, D.

Mashanovich, G. Z.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

Molina-Fernández, I.

Molina-fernández, Í.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Ortega-moñux, A.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Ou, H.

Peucheret, C.

Roelkens, G.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Sarmiento-Merenguel, J.

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Schmid, J. H.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Shi, Y.

Shinojima, H.

Tan, K.

Tan, Y.

Tang, Y.

Tsang, H. K.

Tsuchizawa, T.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Vermeulen, D.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Vivien, L.

Wang, J.

Wang, S.

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Wang, Z.

Wangüemert-Pérez, G.

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Wangüemert-Pérez, G. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Wangüemert-pérez, J. G.

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Watanabe, T.

Wu, H.

Wu, S.

Xiao, J.

Xiong, Y.

Xu, D. X.

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Xu, D.-X.

Xu, H.

Xu, Y.

Y. Xu and J. Xiao, “Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides,” Appl. Opt. 55(3), 611–618 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Yamada, K.

Ye, W. N.

Yeh, P.

Yu, C.

Yu, M.

Yvind, K.

Zarifkar, A.

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, Y.

Zhou, Z.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (3)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

R. Halir, P. Cheben, J. Luque-González, J. Sarmiento-Merenguel, J. H. Schmid, G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and Í. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, G. J. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Opt. Commun. (1)

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Opt. Express (12)

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D. X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. Le Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, and D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
[Crossref] [PubMed]

S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23(10), 12840–12849 (2015).
[Crossref] [PubMed]

K. Tan, Y. Huang, G.-Q. Lo, C. Lee, and C. Yu, “Compact highly-efficient polarization splitter and rotator based on 90° bends,” Opt. Express 24(13), 14506–14512 (2016).
[Crossref] [PubMed]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

Opt. Lett. (10)

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).
[Crossref] [PubMed]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure,” Opt. Lett. 42(24), 5202–5205 (2017).
[Crossref] [PubMed]

X. Chen, W. Liu, Y. Zhang, and Y. Shi, “Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers,” Opt. Lett. 42(19), 3738–3740 (2017).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach-Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref] [PubMed]

L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[Crossref] [PubMed]

C. Gu and P. Yeh, “Form birefringence dispersion in periodic layered media,” Opt. Lett. 21(7), 504–506 (1996).
[Crossref] [PubMed]

Proc. IEEE (2)

R. Halir, A. Ortega-moñux, D. Benedikovic, G. Z. Mashanovich, J. G. Wangüemert-pérez, J. H. Schmid, Í. Molina-fernández, and P. Cheben, “Subwavelength-grating metamaterial structures for silicon photonic devices,” Proc. IEEE 106(12), 2144–2157 (2018).
[Crossref]

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106(12), 2117–2143 (2018).
[Crossref]

Sci. Rep. (2)

C.-C. Huang, “Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures,” Sci. Rep. 8(1), 17338 (2018).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Other (1)

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.33.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The configuration of the proposed PR. The inset shows SWG region with some key parameters labeled.
Fig. 2
Fig. 2 The calculated polarization rotation angle θpol with varied wwg, hetch and wetch at three different wavelengths (λ = 1.26 μm, 1.55 μm and 1.675 μm).
Fig. 3
Fig. 3 (a) The calculated dispersion coefficients DHP1,norm, DHP2,norm and Dκ,norm with varied hetch = wetch and f at 1.55 μm wavelength. (b) The calculated electric field profiles for HP1 and HP2 modes. (c) The calculated Lc dispersion curves for the SWG-assisted and conventional PRs.
Fig. 4
Fig. 4 (a) The calculated band diagrams for HP1 and HP2 modes. (b) The calculated Lc dispersion curves with varied Λ.
Fig. 5
Fig. 5 The calculated (a) PER and (b) EL spectra with varied SWG pitch Λ and period number N.
Fig. 6
Fig. 6 (a) The calculated light propagation profiles for the optimized PR. (b) The calculated transmittance spectra for the SWG-assisted and conventional PRs.
Fig. 7
Fig. 7 The calculated transmittance spectra with deviated structural parameters.

Tables (1)

Tables Icon

Table 1 Comparison of several silicon polarization rotators

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

diag[ n xx , n yy , n zz ]=diag[ n e , n o , n o ].
n o 2 =f n Si 2 +(1f) n SiO2 2 .
1 n e 2 = f n Si 2 + 1f n SiO2 2 .
tan θ pol = η TM0HP1 η TM0HP2
η TM0HPi = | E TM0 × H HPi * dS | 2
L c = λ 2( n eff,HP1 n eff,HP2 )
D HPi,norm = 1 n 0,HPi d n eff,HPi dλ
D κ,norm = 1 κ 0 dκ dλ
κ=1/ L c
β norm,HPi = n eff,HPi Λ λ
PER=10 log 10 ( T TMTE / T TMTM )
EL=10 log 10 ( T TMTE )

Metrics