Abstract

Waveguide or lightguide technology has been widely used in the state-of-the-art, see-through, near-eye displays to reduce system weight and form factor. Although a few of the current products use a geometrical lightguide as an optical combiner, its design and performance assessment methods have been barely discussed. In this paper, by taking into account the factors affecting retinal image quality, we presented novel methods for quantifying and evaluating the optical performances and artifacts of geometrical lightguides based on microstructure mirror arrays, and proposed new merit functions and a novel process for systematic optimization of such lightguides. A lightguide design example implementing the evaluation and optimization methods are demonstrated, and the resulted lightguide is then further utilized as a combiner for the design of a lightweight, glasses-like, see-through, near-eye display.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics

Zeyang Liu, Yajun Pang, Cheng Pan, and Zhanhua Huang
Opt. Express 25(24) 30720-30731 (2017)

Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics

Dewen Cheng, Yongtian Wang, Chen Xu, Weitao Song, and Guofan Jin
Opt. Express 22(17) 20705-20719 (2014)

Design of discretely depth-varying holographic grating for image guide based see-through and near-to-eye displays

Toshiteru Nakamura and Yuzuru Takashima
Opt. Express 26(20) 26520-26533 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Olsson, M. J. Heinrich, D. Kelly, and J. Lapetina, “Wearable device with input and output structures,” U.S. Patent No. 9,285,592 (2016).
  2. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  3. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  4. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref] [PubMed]
  5. Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface,” Appl. Opt. 49(19), 3661–3668 (2010).
    [Crossref] [PubMed]
  6. J. W. Pan and H. C. Hung, “Optical design of a compact see-through head-mounted display with light guide plate,” J. Disp. Technol. 11(3), 223–228 (2015).
    [Crossref]
  7. M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
    [Crossref]
  8. T. Levola, “28.2: Stereoscopic Near to Eye Display using a Single Microdisplay,” SID Symposium Digest of Technical Papers38(1), 1158–1159 (2007).
    [Crossref]
  9. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  10. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  11. M. L. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53(10), 2180–2186 (2014).
    [Crossref] [PubMed]
  12. B. C. Kress and W. J. Cummings, “11‐1: Invited Paper: Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices,” SID Symposium Digest of Technical Papers48(1), 127–131 (2017).
    [Crossref]
  13. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  14. D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
    [Crossref] [PubMed]
  15. Y. Amitai, “P‐21: Extremely Compact High‐Performance HMDs Based on Substrate‐Guided Optical Element,” SID Symposium Digest of Technical Papers35(1), 310–313 (2004).
    [Crossref]
  16. Y. Amitai, “P-27: A Two‐Dimensional Aperture Expander for Ultra‐Compact, High‐Performance Head‐Worn Displays,” SID Symposium Digest of Technical Papers36(11), 360–363 (2005).
    [Crossref]
  17. K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” SPIE Proc. 8720, 8720DD (2013).
    [Crossref]
  18. J. Yang, P. Twardowski, P. Gérard, and J. Fontaine, “Design of a large field-of-view see-through near to eye display with two geometrical waveguides,” Opt. Lett. 41(23), 5426–5429 (2016).
    [Crossref] [PubMed]
  19. Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Appl. Opt. 54(28), 8354–8362 (2015).
    [Crossref] [PubMed]
  20. B. Pascal, D. Guilhem, and S. Khaled, “Optical guide and ocular vision optical system,” U.S. Patent, No. 8,433,172 (2013).
  21. K. Sarayeddline, K. Mirza, P. Benoit, and X. Hugel, “Monolithic light guide optics enabling new user experience for see-through AR glasses,” Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V 9202–92020 (2014).
  22. C. J. Wang and B. Amirparviz, “Image waveguide with mirror arrays,” U.S. Patent No. 8,189,263 (2012).
  23. J. P. Rolland and H. Hua, “Head-mounted display systems,” Encyclopedia of optical engineering 1–13 (2005).
  24. H. Hua, C. W. Pansing, and J. P. Rolland, “Modeling of an eye-imaging system for optimizing illumination schemes in an eye-tracked head-mounted display,” Appl. Opt. 46(31), 7757–7770 (2007).
    [Crossref] [PubMed]
  25. M. Xu and H. Hua, “High dynamic range head mounted display based on dual-layer spatial modulation,” Opt. Express 25(19), 23320–23333 (2017).
    [Crossref] [PubMed]
  26. A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
    [Crossref] [PubMed]
  27. J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE, 2004).
  28. M. Xu and H. Hua, “Ultrathin optical combiner with microstructure mirrors in augmented reality,” Proc. SPIE 10676, 1067614 (2018).
    [Crossref]
  29. P. Nema, “Digital imaging and communications in medicine (DICOM) Part 14: Grayscale standard display function,” National Electrical Manufacturers Association, Rosslyn, VA (2000).
  30. https://www.miyotadca.com/mdca_product/ .

2018 (2)

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref] [PubMed]

M. Xu and H. Hua, “Ultrathin optical combiner with microstructure mirrors in augmented reality,” Proc. SPIE 10676, 1067614 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (4)

2014 (3)

2013 (1)

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” SPIE Proc. 8720, 8720DD (2013).
[Crossref]

2010 (1)

2009 (2)

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2007 (1)

1973 (1)

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, “P‐21: Extremely Compact High‐Performance HMDs Based on Substrate‐Guided Optical Element,” SID Symposium Digest of Technical Papers35(1), 310–313 (2004).
[Crossref]

Y. Amitai, “P-27: A Two‐Dimensional Aperture Expander for Ultra‐Compact, High‐Performance Head‐Worn Displays,” SID Symposium Digest of Technical Papers36(11), 360–363 (2005).
[Crossref]

Cheng, D.

Cummings, W. J.

B. C. Kress and W. J. Cummings, “11‐1: Invited Paper: Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices,” SID Symposium Digest of Technical Papers48(1), 127–131 (2017).
[Crossref]

Darkhanbaatar, N.

M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
[Crossref]

Erdenebat, M. U.

M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
[Crossref]

Fontaine, J.

Gérard, P.

Han, J.

Hou, Q.

Hu, X.

Hu, Y.

Hua, H.

Huang, H.

Hung, H. C.

J. W. Pan and H. C. Hung, “Optical design of a compact see-through head-mounted display with light guide plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

Ji, Y. M.

Jin, G.

Kim, H. J.

Kim, N.

Kim, S. B.

Kim, S. H.

Kress, B. C.

B. C. Kress and W. J. Cummings, “11‐1: Invited Paper: Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices,” SID Symposium Digest of Technical Papers48(1), 127–131 (2017).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Kwon, K. C.

M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
[Crossref]

Levola, T.

T. Levola, “28.2: Stereoscopic Near to Eye Display using a Single Microdisplay,” SID Symposium Digest of Technical Papers38(1), 1158–1159 (2007).
[Crossref]

Li, B.

Li, H.

Lim, Y. T.

M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
[Crossref]

Liu, J.

Liu, X.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Mirza, K.

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” SPIE Proc. 8720, 8720DD (2013).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Pan, J. W.

J. W. Pan and H. C. Hung, “Optical design of a compact see-through head-mounted display with light guide plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

Pansing, C. W.

Park, J. H.

Pask, C.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Piao, M. L.

Rolland, J. P.

Sarayeddine, K.

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” SPIE Proc. 8720, 8720DD (2013).
[Crossref]

Snyder, A. W.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Song, W.

Talha, M. M.

Twardowski, P.

Wang, Q.

Wang, Y.

Xu, C.

Xu, L.

Xu, M.

M. Xu and H. Hua, “Ultrathin optical combiner with microstructure mirrors in augmented reality,” Proc. SPIE 10676, 1067614 (2018).
[Crossref]

M. Xu and H. Hua, “High dynamic range head mounted display based on dual-layer spatial modulation,” Opt. Express 25(19), 23320–23333 (2017).
[Crossref] [PubMed]

Yang, J.

Yao, X.

Yeom, H. J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Zhang, H.

Zheng, Z.

Appl. Opt. (5)

J. Disp. Technol. (1)

J. W. Pan and H. C. Hung, “Optical design of a compact see-through head-mounted display with light guide plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full‐color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (1)

M. Xu and H. Hua, “Ultrathin optical combiner with microstructure mirrors in augmented reality,” Proc. SPIE 10676, 1067614 (2018).
[Crossref]

SPIE Proc. (1)

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” SPIE Proc. 8720, 8720DD (2013).
[Crossref]

Vision Res. (1)

A. W. Snyder and C. Pask, “The Stiles-Crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref] [PubMed]

Other (13)

J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE, 2004).

B. Pascal, D. Guilhem, and S. Khaled, “Optical guide and ocular vision optical system,” U.S. Patent, No. 8,433,172 (2013).

K. Sarayeddline, K. Mirza, P. Benoit, and X. Hugel, “Monolithic light guide optics enabling new user experience for see-through AR glasses,” Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V 9202–92020 (2014).

C. J. Wang and B. Amirparviz, “Image waveguide with mirror arrays,” U.S. Patent No. 8,189,263 (2012).

J. P. Rolland and H. Hua, “Head-mounted display systems,” Encyclopedia of optical engineering 1–13 (2005).

P. Nema, “Digital imaging and communications in medicine (DICOM) Part 14: Grayscale standard display function,” National Electrical Manufacturers Association, Rosslyn, VA (2000).

https://www.miyotadca.com/mdca_product/ .

M. I. Olsson, M. J. Heinrich, D. Kelly, and J. Lapetina, “Wearable device with input and output structures,” U.S. Patent No. 9,285,592 (2016).

B. C. Kress and W. J. Cummings, “11‐1: Invited Paper: Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices,” SID Symposium Digest of Technical Papers48(1), 127–131 (2017).
[Crossref]

Y. Amitai, “P‐21: Extremely Compact High‐Performance HMDs Based on Substrate‐Guided Optical Element,” SID Symposium Digest of Technical Papers35(1), 310–313 (2004).
[Crossref]

Y. Amitai, “P-27: A Two‐Dimensional Aperture Expander for Ultra‐Compact, High‐Performance Head‐Worn Displays,” SID Symposium Digest of Technical Papers36(11), 360–363 (2005).
[Crossref]

M. U. Erdenebat, Y. T. Lim, K. C. Kwon, N. Darkhanbaatar, and N. Kim, “Waveguide-Type Head-Mounted Display System for AR Application,” (2018).
[Crossref]

T. Levola, “28.2: Stereoscopic Near to Eye Display using a Single Microdisplay,” SID Symposium Digest of Technical Papers38(1), 1158–1159 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic layout of the geometrical lightguide based on (a) partially reflective mirror-array and (b) micro-mirror-array (MMA).
Fig. 2
Fig. 2 (a) Schematic side view of ray paths and angular relations at the MMA-based lightguide in-coupler wedge and out-coupling area. (b) Stray light path and corresponding normal ray path and at the out-coupling area. Normal ray is coupled out directly from first micro-mirror whereas stray light is coupled out by the following micro-mirrors.
Fig. 3
Fig. 3 Examples showing the effectiveness of four metric functions. (a) The values of four evaluation metric functions among 891 simulated MMA lightguide structures. (b) Three sampled field illuminance distributions at the eyebox. Top: low pupil uniformity equation (S3) value. Bottom: high S3 value. (c) Three sampled field intensities at the eyebox with four occasions. 1: low S1 and high S2; 2: high S1; 3: low S2; 4: high S4 and (d) planar graph showing the coupling efficiency of the four cases in (c).
Fig. 4
Fig. 4 (a) Schematic layout of the out-coupled ray bundles and eye model. (b) The projected amplitude reflectance distribution on the pupil plane when out-coupled field angle equals to 0° and 3.3°. (c) The illuminance distribution of the 3.3° incident field at the eyebox of the selected MMA configuration. (d) The normalized point spread function (PSF) of the 3.3° incident field on retina. (e) Original test image and (f) the simulated perceived retinal image with 1.2 cycles/degree sinusoid pattern.
Fig. 5
Fig. 5 Schematic layout and ray path of the optimal MMA-based lightguide with efficiency bias.
Fig. 6
Fig. 6 Simulation results of the retinal image and stray light distributions over full field of view. (a) Normalized retinal image intensity with efficiency bias design. (b) Normalized retinal image intensity with uniformity bias design. (c) Stray light distribution with efficiency bias design and (d) stray light distribution with uniformity bias design.
Fig. 7
Fig. 7 (a) and (d): The reserve greyscale image as the digital input to compensate for image non-uniformity, for efficiency and uniformity bias design in Fig. 6, respectively. (b) and (e): The perceived retinal image after digital image uniformity correction. (c) and (f): Binary noticeable difference map, where white pixels denote perceivable illuminance variations.
Fig. 8
Fig. 8 (a) Perspective view of the ray bundle propagation in MMA lightguide YOZ-plane. (b) 3-D view of the freeform collimator design. (c) MTF plot over full field of view. (d) Distortion grid of the virtual image over full field of view. (e) CAD model of the MMA-lightguide-based AR display prototype.

Tables (7)

Tables Icon

Table 1 Searching Ranges and Increments of Structural Variables for Global Searching.

Tables Icon

Table 2 Searching Ranges and Increments of Out-coupler Variables for Local Optimization

Tables Icon

Table 3 Structural Parameters of Two Optimal Designs

Tables Icon

Table 4 Out-coupler Parameters of Two Optimal Designs

Tables Icon

Table 5 Coupling Efficiency and Stray Light across Sample Fields of Two Optimal Designs

Tables Icon

Table 6 Comparison of Performance Metrics at the Exit Pupil of Two Optimal Designs

Tables Icon

Table 7 Comparison of Performance Metrics on the Simulated Retinal Images of Two Optimal Designs

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

β> sin 1 1 n + sin 1 sin θ max n
W= t 1 sinβcosβ ( t 1 +δt){tanβtan[β sin 1 ( sin θ i n )]} S=2ttan(β+ sin 1 ( sin θ i n ))
t 1 =2tsin β 2
dEPD+2ERFtan θ max +2ttan θ max
ω= β 2
x=A+Bl+C l 2 +D l 3
θ si = sin 1 {nsin[4ω+β sin 1 ( sin θ i n )180°]}
S 1 = 1 M i=1 M P r (i) P in (i)
S 2 = 1 M i=1 M [ P r (i) P r (i) ¯ ] 2 P r (i) ¯
S 3 = 1 M i=1 M 1 NK j=1 NK [ E r (i,j) E r (i) ¯ ] 2 E r (i) ¯
S 4 = 1 M i=1 M P sl (i) P r (i)
PSF(u,v;ξ,η)= | exp[j π λf ( u 2 + v 2 )] jλf e j k r E r (ξ,η,x,y)P(x,y) e j 2π λ W ab exp[ j2π λf (ux+vy)]dxdy | 2
MeritFun= W 1 ( S 1 ) normalized + W 2 ( S 2 ) normalized With condition of { S 3 < R pupil S 4 < R stray

Metrics