Abstract

The output characteristics, modal properties, far-field profiles, and dynamic modulation responses of semiconductor lasers with surface higher-order gratings fabricated by the standard photolithography are presented. Single-mode semiconductor lasers with 20th- and 37th-order gratings for the 1.55 µm wavelength range are realized. The single-mode semiconductor lasers with 20th-order gratings have lower threshold currents and higher slope efficiencies than those with 37th-order gratings. The surface higher-order grating placed closed to the output facet can deteriorate the vertical far-field profile of the semiconductor laser. However, the properties of the semiconductor laser’s single-mode operation are not affected by the surface higher-order grating’s position in the ridge waveguide. The −3 dB bandwidth of these single-mode semiconductor lasers can achieve 9 GHz at 100 mA, which is the highest, to the best of our knowledge, for such a kind of single-mode semiconductor laser with a surface higher-order grating.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A hybrid silicon single mode laser with a slotted feedback structure

Yejin Zhang, Hongwei Qu, Hailing Wang, Siriguleng Zhang, Lei Liu, Shaodong Ma, and Wanhua Zheng
Opt. Express 21(1) 877-883 (2013)

Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography

Tingting Yu, Li Zou, Lei Wang, and Jian-Jun He
Opt. Express 20(15) 16291-16298 (2012)

A laterally-coupled distributed feedback laser with equivalent quarter-wave phase shift

Jingsi Li and Julian Cheng
Opt. Express 21(22) 26936-26941 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  2. J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
    [Crossref]
  3. V. Cristofori, F. Da Ros, M. E. Chaibi, Y. Ding, L. Bramerie, A. Shen, A. Gallet, G.-H. Duan, K. Hassan, S. Olivier, L. K. Oxenløwe, and C. Peucheret, “1.5-μm directly modulated transmission over 66 km of SSMF with an Integrated Hybrid III-V/SOI DFB Laser,” presented at the International Conference on Group IV Photonics, Berlin, Germany, August 2017.
    [Crossref]
  4. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
    [Crossref]
  5. Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
    [Crossref]
  6. S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
    [Crossref]
  7. W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
    [Crossref]
  8. C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
    [Crossref]
  9. Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
    [Crossref]
  10. H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
    [Crossref]
  11. X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
    [Crossref]
  12. A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
    [Crossref] [PubMed]
  13. Q. Lu, W. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
    [Crossref] [PubMed]
  14. W. H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
    [Crossref] [PubMed]
  15. W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
    [Crossref]
  16. R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
    [Crossref]
  17. R. Phelan, B. Kelly, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, B. Cai, A. Kaszubowska-Anandarajah, P. Perry, J. Stopford, P. Anandarajah, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with ultra narrow linewidth emission < 3 kHz,” presented at the Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, San Diego, Calif., USA, 24–28 February 2008.
  18. M. Wang, H. Wang, P. Ma, F. Dong, A. Liu, and W. Zheng, “Eight-channel laser array with 100 GHz channel spacing based on surface-slotted structures fabricated by standard lithography,” Opt. Lett. 43(20), 4867–4870 (2018).
    [Crossref] [PubMed]
  19. M. J. Wang, H. L. Wang, R. Z. Meng, A. Y. Qi, and W. H. Zheng, “1550 nm AlGaInAs MQWs 10-channel laser array for optical interconnects,” presented at Conference on Lasers and Electro-Optics, San Jose, Calif., USA, 13–18 May 2018.
    [Crossref]
  20. W. Sun, Q. Y. Lu, W. H. Guo, M. Wallace, F. Bello, and J. F. Donegan, “Analysis of high-order slotted surface gratings by the 2-D finite-difference time-domain method,” J. Lightwave Technol. 35(1), 96–102 (2017).
    [Crossref]
  21. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
    [Crossref]
  22. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, “Diode lasers and photonic integrated circuits,” Second Edition, Wiley, 62–65, 2012.
  23. D. Zhou, S. Liang, L. Zhao, H. Zhu, and W. Wang, “High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers,” Opt. Express 25(3), 2341–2346 (2017).
    [Crossref] [PubMed]
  24. P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
    [Crossref]
  25. areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
    [Crossref]
  26. S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Pérot lasers,” Appl. Phys. Lett. 86(20), 201101 (2005).
    [Crossref]
  27. J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” presented at the Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks, 3 June 2005.
    [Crossref]
  28. M. Nawrocka, Q. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949–18957 (2014).
    [Crossref] [PubMed]

2018 (2)

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

M. Wang, H. Wang, P. Ma, F. Dong, A. Liu, and W. Zheng, “Eight-channel laser array with 100 GHz channel spacing based on surface-slotted structures fabricated by standard lithography,” Opt. Lett. 43(20), 4867–4870 (2018).
[Crossref] [PubMed]

2017 (2)

2015 (2)

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref] [PubMed]

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

2014 (2)

M. Nawrocka, Q. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949–18957 (2014).
[Crossref] [PubMed]

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

2013 (3)

W. H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

2012 (2)

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

2011 (1)

2009 (2)

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

2006 (1)

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

2005 (2)

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Pérot lasers,” Appl. Phys. Lett. 86(20), 201101 (2005).
[Crossref]

2000 (1)

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

1998 (1)

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

1991 (1)

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Abdullaev, A.

Alwan, J. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Anandarajah, P.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Anandarajah, P. M.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

Bach, L.

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Barry, L. P.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Beernink, K. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Bello, F.

Benson, A.

Browning, C.

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

Bryan, R. P.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Byrne, D.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Cathcart, T.

Chen, N.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Chijuma, K.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Cockerill, T. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Coleman, J. J.

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Corbett, B.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Crump, P.

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

Daunt, C.

Decker, J.

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

Deubert, S.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Dias, N. L.

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

Donegan, J. F.

W. Sun, Q. Y. Lu, W. H. Guo, M. Wallace, F. Bello, and J. F. Donegan, “Analysis of high-order slotted surface gratings by the 2-D finite-difference time-domain method,” J. Lightwave Technol. 35(1), 96–102 (2017).
[Crossref]

A. Abdullaev, Q. Lu, W. Guo, M. J. Wallace, M. Nawrocka, F. Bello, A. Benson, J. O’Callaghan, and J. F. Donegan, “Improved performance of tunable single-mode laser array based on high-order slotted surface grating,” Opt. Express 23(9), 12072–12078 (2015).
[Crossref] [PubMed]

M. Nawrocka, Q. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949–18957 (2014).
[Crossref] [PubMed]

W. H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Lu, W. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[Crossref] [PubMed]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Dong, F.

Duke, A.

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

Eisenstein, G.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Erbert, G.

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

Forchel, A.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Fricke, J.

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

Futakuchi, N.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Gentner, J. L.

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Goldstein, L.

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Gunning, F. C. G.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

Guo, W.

Guo, W. H.

W. Sun, Q. Y. Lu, W. H. Guo, M. Wallace, F. Bello, and J. F. Donegan, “Analysis of high-order slotted surface gratings by the 2-D finite-difference time-domain method,” J. Lightwave Technol. 35(1), 96–102 (2017).
[Crossref]

M. Nawrocka, Q. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, and J. F. Donegan, “Widely tunable six-section semiconductor laser based on etched slots,” Opt. Express 22(16), 18949–18957 (2014).
[Crossref] [PubMed]

W. H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Hadass, D.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Herbert, C.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

Hughes, J. S.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Jones, D.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Kaiser, W.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Kaszubowska-Anandarajah, A.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Kelly, B.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Krakowski, M.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Lambkin, P.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Latkowski, S.

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

Liang, S.

Liu, A.

Liu, A. J.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Lu, Q.

Lu, Q. Y.

W. Sun, Q. Y. Lu, W. H. Guo, M. Wallace, F. Bello, and J. F. Donegan, “Analysis of high-order slotted surface gratings by the 2-D finite-difference time-domain method,” J. Lightwave Technol. 35(1), 96–102 (2017).
[Crossref]

Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Lynch, M.

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Lu, W. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[Crossref] [PubMed]

Ma, P.

Ma, X. L.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Mathwig, K.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Mikhelashvili, V.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Miller, L. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Nakano, Y.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Nawrocka, M.

O’Brien, S.

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Pérot lasers,” Appl. Phys. Lett. 86(20), 201101 (2005).
[Crossref]

O’Callaghan, J.

O’Carroll, J.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

O’Gorman, J.

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

O’Reilly, E. P.

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Pérot lasers,” Appl. Phys. Lett. 86(20), 201101 (2005).
[Crossref]

Parillaud, O.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

Perry, P.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Peters, F.

Phelan, R.

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Price, R. K.

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

Qi, A. Y.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Qu, H. W.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Reddy, U.

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

Reithmaier, J. P.

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Rennon, S.

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

Rensing, M.

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Sun, W.

Takei, K.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Verdeyen, J. T.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Wallace, M.

Wallace, M. J.

Wang, H.

Wang, M.

Wang, M. J.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Wang, W.

Watanabe, Y.

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Weldon, V.

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Lu, W. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[Crossref] [PubMed]

Wenzel, H.

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

Zhao, L.

Zheng, W.

Zheng, W. H.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Zhou, D.

Zhou, R.

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

Zhou, X. Y.

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

Zhu, H.

Zimmerman, J. W.

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Rennon, L. Bach, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, “High-frequency properties of 1.55 μm laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography,” Appl. Phys. Lett. 77(3), 325–327 (2000).
[Crossref]

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Pérot lasers,” Appl. Phys. Lett. 86(20), 201101 (2005).
[Crossref]

Electron. Lett. (3)

areJ. O’Carroll, B. Kelly, F. C. G. Gunning, L. P. Barry, D. Byrne, R. Phelan, and P. M. Anandarajah, “Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm,” Electron. Lett. 50(13), 948–950 (2014).
[Crossref]

W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, and G. Eisenstein, “Static and dynamic properties of laterally coupled DFB lasers based on InAs/InP QDash structures,” Electron. Lett. 41(14), 808–810 (2005).
[Crossref]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “-40 °C < T < 95 °C mode-hop-free operation of uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Wenzel, J. Fricke, J. Decker, P. Crump, and G. Erbert, “High-power distributed feedback lasers with surface gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 21(6), 352 (2015).
[Crossref]

J. W. Zimmerman, R. K. Price, U. Reddy, N. L. Dias, and J. J. Coleman, “Narrow linewidth surface-etched DBR lasers: fundamental design aspects and applications,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1503712 (2013).
[Crossref]

IEEE Photonics J. (1)

P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated Two-Section Discrete Mode Laser,” IEEE Photonics J. 4(6), 2085–2094 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (6)

W. H. Guo, Q. Y. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single-mode lasers,” IEEE Photonics Technol. Lett. 24(8), 634–636 (2012).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photonics Technol. Lett. 3(1), 6–8 (1991).
[Crossref]

Y. Watanabe, N. Chen, K. Takei, K. Chijuma, N. Futakuchi, and Y. Nakano, “Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process,” IEEE Photonics Technol. Lett. 10(12), 1688–1690 (1998).
[Crossref]

Q. Y. Lu, A. Abdullaev, M. Nawrocka, W. H. Guo, J. O’Callaghan, and J. F. Donegan, “Slotted single mode lasers integrated with a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 25(6), 564–567 (2013).
[Crossref]

X. L. Ma, A. J. Liu, H. W. Qu, A. Y. Qi, X. Y. Zhou, M. J. Wang, and W. H. Zheng, “High-power tapered photonic crystal lasers with slots for narrow spectral width,” IEEE Photonics Technol. Lett. 30(7), 634–637 (2018).
[Crossref]

IET Optoelectron. (1)

C. Herbert, P. Anandarajah, P. Perry, D. Jones, A. Kaszubowska-Anandarajah, L. P. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (1)

Other (5)

M. J. Wang, H. L. Wang, R. Z. Meng, A. Y. Qi, and W. H. Zheng, “1550 nm AlGaInAs MQWs 10-channel laser array for optical interconnects,” presented at Conference on Lasers and Electro-Optics, San Jose, Calif., USA, 13–18 May 2018.
[Crossref]

R. Phelan, B. Kelly, D. Jones, C. Herbert, J. O’Carroll, M. Rensing, B. Cai, A. Kaszubowska-Anandarajah, P. Perry, J. Stopford, P. Anandarajah, L. P. Barry, and J. O’Gorman, “Discrete mode laser diodes with ultra narrow linewidth emission < 3 kHz,” presented at the Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, San Diego, Calif., USA, 24–28 February 2008.

V. Cristofori, F. Da Ros, M. E. Chaibi, Y. Ding, L. Bramerie, A. Shen, A. Gallet, G.-H. Duan, K. Hassan, S. Olivier, L. K. Oxenløwe, and C. Peucheret, “1.5-μm directly modulated transmission over 66 km of SSMF with an Integrated Hybrid III-V/SOI DFB Laser,” presented at the International Conference on Group IV Photonics, Berlin, Germany, August 2017.
[Crossref]

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” presented at the Opto-Ireland 2005: Optoelectronics, Photonic Devices, and Optical Networks, 3 June 2005.
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, “Diode lasers and photonic integrated circuits,” Second Edition, Wiley, 62–65, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified structure of the InP-based epitaxy layers. d s and d w are the width of slots and distance between adjacent slots, respectively. h is the depth of slots.
Fig. 2
Fig. 2 (a) Loss spectra of gratings with the order number from 20 to 100; (b) Loss spectra of 20th-, 25th-, 29th-, 33th-, and 37th-order gratings.
Fig. 3
Fig. 3 (a) Schematic of the semiconductor laser with a surface higher-order grating; (b) Optical microscope image of the packaged semiconductor laser on a carrier. The p-type contact is connected to the signal (S) pad. G denotes the ground pad.
Fig. 4
Fig. 4 SEM image of the ridge waveguide with a 37th-order grating. Insets are SEM images of the etched slots cleaved along the dashed lines.
Fig. 5
Fig. 5 Output power curves of semiconductor lasers with different higher-order gratings and FP semiconductor lasers under CW condition. The higher-order gratings are positioned at the edges of the ridge waveguides (close to the output facet).
Fig. 6
Fig. 6 Spectra of semiconductor lasers with (a) the 37th-order grating and (b) the 20th-order grating under different injection currents. The higher-order gratings are positioned at the edges of the ridge waveguides (close to the output facet).
Fig. 7
Fig. 7 Typical small signal responses of (a) single-mode semiconductor laser with the 37th-order grating and (b) single-mode semiconductor laser with the 20th-order grating measured at 25 , respectively. The higher-order gratings are positioned at the edges of the ridge waveguides (close to the output facet).
Fig. 8
Fig. 8 Vertical and horizontal far-field profiles of (a) the FP semiconductor laser, (b) the semiconductor laser with the higher-order grating placed in the middle of the ridge waveguide, and (c) the semiconductor laser with the higher-order grating placed at the edge of the ridge waveguide (close to the output facet).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η se = hν q η i α m α i + α m ,
α i = α i slot + α i 0 ,
α i slot = hν η i α m η se q α m α i 0 .
I th qVB N tr 2 η i e 2( α i + α m )/ Γ g 0N ,

Metrics