Abstract

We analyzed for the first time the effect of variations in the number of air hole rings and the filling factor of twisted microstructured optical fibers on the resonant couplings between fundamental and cladding modes. Rigorous numerical simulations show that these parameters can be used to control the spectral width of the resonance peaks, resonance loss, and relative strength of polarization effects. Furthermore, the number of air hole rings has a decisive impact on the number of twist-induced resonances and their wavelength range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Role of symmetry in mode coupling in twisted microstructured optical fibers

Maciej Napiorkowski and Waclaw Urbanczyk
Opt. Lett. 43(3) 395-398 (2018)

Microstructured optical fiber devices

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale
Opt. Express 9(13) 698-713 (2001)

References

  • View by:
  • |
  • |
  • |

  1. R. D. Birch, “Fabrication and characterization of circularly birefringent helical fibers,” Electron. Lett. 23(1), 50–52 (1987).
    [Crossref]
  2. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
    [Crossref] [PubMed]
  3. V. I. Kopp, J. Park, M. Wlodawski, J. Singer, D. Neugroschl, and A. Z. Genack, “Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching,” J. Lightwave Technol. 32(4), 605–613 (2014).
    [Crossref]
  4. C. N. Alexeyev and M. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
    [Crossref]
  5. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
    [Crossref]
  6. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
    [Crossref] [PubMed]
  7. X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19(27), 26515–26528 (2011).
    [Crossref] [PubMed]
  8. C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
    [Crossref]
  9. C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
    [Crossref]
  10. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  11. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  13. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
    [Crossref] [PubMed]
  14. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  15. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref] [PubMed]
  16. G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
    [Crossref]
  17. T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. J. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30(11), 2921–2927 (2013).
    [Crossref]
  18. S. Nakano, T. Fujisawa, T. Sato, and K. Saitoh, “Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber,” Jpn. J. Appl. Phys. 57(8S2), 08PF06 (2018).
    [Crossref]
  19. R. Beravat, G. K. L. Wong, X. M. Xi, M. H. Frosz, and P. St.J. Russell, “Current sensing using circularly birefringent twisted solid-core photonic crystal fiber,” Opt. Lett. 41(7), 1672 (2016).
    [Crossref] [PubMed]
  20. M. Napiorkowski and W. Urbanczyk, “Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers,” Opt. Express 26(9), 12131–12143 (2018).
    [Crossref] [PubMed]
  21. T. Fujisawa and K. Saitoh, “Off-axis core transmission characteristics of helically twisted photonic crystal fibers,” Opt. Lett. 43(20), 4935–4938 (2018).
    [Crossref] [PubMed]
  22. X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. S. J. Russell, “Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber,” Optica 1(3), 165–169 (2014).
    [Crossref]
  23. R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. J. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
    [Crossref] [PubMed]
  24. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
    [Crossref] [PubMed]
  25. M. Napiorkowski and W. Urbanczyk, “Role of symmetry in mode coupling in twisted microstructured optical fibers,” Opt. Lett. 43(3), 395–398 (2018).
    [Crossref] [PubMed]
  26. T. Fujisawa, T. Sato, and K. Saitoh, “Full-vector finite-element beam propagation method for helicoidal waveguides and its application to twisted photonic crystal fibers,” J. Lightwave Technol. 35(14), 2894–2901 (2017).
    [Crossref]
  27. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
    [Crossref] [PubMed]
  28. M. Bass, Handbook of Optics, III edition, (McGraw-Hill, 2009, Vol IV).
  29. A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
    [Crossref]
  30. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibers: II Edition (Imperial College, 2012).
  31. A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
    [Crossref]
  32. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005).
    [Crossref] [PubMed]
  33. B. Kuhlmey, R. McPhedran, C. de Sterke, P. Robinson, G. Renversez, and D. Maystre, “Microstructured optical fibers: where’s the edge?” Opt. Express 10(22), 1285–1290 (2002).
    [Crossref] [PubMed]
  34. M. Napiorkowski and W. Urbanczyk, “Surface plasmon resonance effect in helical core fibers,” J. Opt. 18(8), 085001 (2016).
    [Crossref]
  35. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
    [Crossref]
  36. P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell, “Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber,” Optica 5(10), 1315 (2018).
    [Crossref]
  37. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
    [Crossref] [PubMed]
  38. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
    [Crossref] [PubMed]

2018 (6)

2017 (1)

2016 (3)

R. Beravat, G. K. L. Wong, X. M. Xi, M. H. Frosz, and P. St.J. Russell, “Current sensing using circularly birefringent twisted solid-core photonic crystal fiber,” Opt. Lett. 41(7), 1672 (2016).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Surface plasmon resonance effect in helical core fibers,” J. Opt. 18(8), 085001 (2016).
[Crossref]

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. J. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref] [PubMed]

2015 (1)

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (1)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

2009 (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
[Crossref]

2008 (2)

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[Crossref] [PubMed]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

2007 (1)

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

2006 (1)

2005 (3)

2004 (3)

A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
[Crossref]

C. N. Alexeyev and M. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[Crossref]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1997 (1)

1987 (1)

R. D. Birch, “Fabrication and characterization of circularly birefringent helical fibers,” Electron. Lett. 23(1), 50–52 (1987).
[Crossref]

Agha, Y. O.

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

Ahmed, G.

Alexeyev, C.

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

Alexeyev, C. N.

C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
[Crossref]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

C. N. Alexeyev and M. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[Crossref]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Anuszkiewicz, A.

Babic, F.

Barnett, S. M.

Barshak, E. V.

C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
[Crossref]

Beravat, R.

Berghmans, F.

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Bian, B.

Biancalana, F.

T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. J. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30(11), 2921–2927 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Birch, R. D.

R. D. Birch, “Fabrication and characterization of circularly birefringent helical fibers,” Electron. Lett. 23(1), 50–52 (1987).
[Crossref]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Bordas, F.

Chang, G.

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Chen, Y.

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Clarkson, W. A.

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Cooper, L. J.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

de Sterke, C.

Edavalath, N. N.

Euser, T. G.

Frosz, M. H.

Fujisawa, T.

Fujita, M.

Galvanauskas, A.

Geernaert, T.

Genack, A. Z.

Golojuch, G.

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Guenneau, S.

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
[Crossref]

Günendi, M. C.

Jiang, X.

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Kawanishi, S.

Klimek, J.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Kopp, V. I.

Koshiba, M.

Kubota, H.

Kuhlmey, B.

Kuhlmey, B. T.

Lapin, B.

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

Lapin, B. P.

C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
[Crossref]

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Liu, C. H.

Lu, J.

Ma, X.

Makara, M.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Martynkien, T.

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Maystre, D.

McPhedran, R.

Mergo, P.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Milione, G.

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

Nakano, S.

S. Nakano, T. Fujisawa, T. Sato, and K. Saitoh, “Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber,” Jpn. J. Appl. Phys. 57(8S2), 08PF06 (2018).
[Crossref]

Napiorkowski, M.

M. Napiorkowski and W. Urbanczyk, “Role of symmetry in mode coupling in twisted microstructured optical fibers,” Opt. Lett. 43(3), 395–398 (2018).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers,” Opt. Express 26(9), 12131–12143 (2018).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Surface plasmon resonance effect in helical core fibers,” J. Opt. 18(8), 085001 (2016).
[Crossref]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Nasilowski, T.

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Neugroschl, D.

Nicolet, A.

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
[Crossref]

Olszewski, J.

Park, J.

Poturaj, K.

Ranka, J. K.

Renversez, G.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Robinson, P.

Roth, P.

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Russell, P. S. J.

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. J. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref] [PubMed]

X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. S. J. Russell, “Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber,” Optica 1(3), 165–169 (2014).
[Crossref]

T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. J. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30(11), 2921–2927 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Russell, P. St. J.

Sahu, J. K.

Saitoh, K.

Sato, T.

S. Nakano, T. Fujisawa, T. Sato, and K. Saitoh, “Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber,” Jpn. J. Appl. Phys. 57(8S2), 08PF06 (2018).
[Crossref]

T. Fujisawa, T. Sato, and K. Saitoh, “Full-vector finite-element beam propagation method for helicoidal waveguides and its application to twisted photonic crystal fibers,” J. Lightwave Technol. 35(14), 2894–2901 (2017).
[Crossref]

Shi, Y.

Singer, J.

Skorupski, K.

Sonnenfeld, C.

St.J. Russell, P.

Statkiewicz-Barabach, G.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Stentz, A. J.

Suzuki, K.

Szczurowski, M. K.

Szpulak, M.

Tanaka, M.

Tarnowski, K.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Thienpont, H.

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Urbanczyk, W.

M. Napiorkowski and W. Urbanczyk, “Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers,” Opt. Express 26(9), 12131–12143 (2018).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Role of symmetry in mode coupling in twisted microstructured optical fibers,” Opt. Lett. 43(3), 395–398 (2018).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Surface plasmon resonance effect in helical core fibers,” J. Opt. 18(8), 085001 (2016).
[Crossref]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005).
[Crossref] [PubMed]

Volyar, A. V.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
[Crossref]

Wang, P.

Weiss, T.

T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. S. J. Russell, “Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers,” J. Opt. Soc. Am. B 30(11), 2921–2927 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Windeler, R. S.

Wlodawski, M.

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

Wong, G. K. L.

Xi, X. M.

Yavorsky, M.

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

C. N. Alexeyev and M. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[Crossref]

Yavorsky, M. A.

C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
[Crossref]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Zhang, Z.

Zolla, F.

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
[Crossref]

Electron. Lett. (1)

R. D. Birch, “Fabrication and characterization of circularly birefringent helical fibers,” Electron. Lett. 23(1), 50–52 (1987).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (2)

G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12(7), 075402 (2010).
[Crossref]

M. Napiorkowski and W. Urbanczyk, “Surface plasmon resonance effect in helical core fibers,” J. Opt. 18(8), 085001 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

C. N. Alexeyev and M. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A, Pure Appl. Opt. 6(9), 824–832 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Nakano, T. Fujisawa, T. Sato, and K. Saitoh, “Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber,” Jpn. J. Appl. Phys. 57(8S2), 08PF06 (2018).
[Crossref]

Opt. Express (8)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express 19(27), 26515–26528 (2011).
[Crossref] [PubMed]

J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005).
[Crossref] [PubMed]

B. Kuhlmey, R. McPhedran, C. de Sterke, P. Robinson, G. Renversez, and D. Maystre, “Microstructured optical fibers: where’s the edge?” Opt. Express 10(22), 1285–1290 (2002).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers,” Opt. Express 26(9), 12131–12143 (2018).
[Crossref] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
[Crossref] [PubMed]

Opt. Lett. (8)

T. Fujisawa and K. Saitoh, “Off-axis core transmission characteristics of helically twisted photonic crystal fibers,” Opt. Lett. 43(20), 4935–4938 (2018).
[Crossref] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
[Crossref] [PubMed]

P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31(2), 226–228 (2006).
[Crossref] [PubMed]

M. Napiorkowski and W. Urbanczyk, “Role of symmetry in mode coupling in twisted microstructured optical fibers,” Opt. Lett. 43(3), 395–398 (2018).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
[Crossref] [PubMed]

R. Beravat, G. K. L. Wong, X. M. Xi, M. H. Frosz, and P. St.J. Russell, “Current sensing using circularly birefringent twisted solid-core photonic crystal fiber,” Opt. Lett. 41(7), 1672 (2016).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (3)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices,” Phys. Rev. A 80(6), 063821 (2009).
[Crossref]

C. Alexeyev, B. Lapin, G. Milione, and M. Yavorsky, “Optical activity in multihelicoidal optical fibers,” Phys. Rev. A 92(3), 033809 (2015).
[Crossref]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78(4), 043828 (2008).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

C. N. Alexeyev, E. V. Barshak, B. P. Lapin, and M. A. Yavorsky, “Reciprocal optical activity in multihelicoidal optical fibers,” Phys. Rev. A (Coll. Park) 98(2), 023824 (2018).
[Crossref]

Sci. Adv. (1)

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. S. J. Russell, “Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref] [PubMed]

Science (3)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305(5680), 74–75 (2004).
[Crossref] [PubMed]

Wave Random Complex (1)

A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Leaky modes in twisted microstructured optical fibers,” Wave Random Complex 17(4), 559–570 (2007).
[Crossref]

Other (2)

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibers: II Edition (Imperial College, 2012).

M. Bass, Handbook of Optics, III edition, (McGraw-Hill, 2009, Vol IV).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-section of the analyzed twisted microstructured optical fiber. Arrow shows the twist direction.
Fig. 2
Fig. 2 Waveguide loss calculated versus wavelength for HE1,1 (blue dotted) and HE1,1+ (red solid) fundamental modes in twisted MOF with ΛL = 3 µm, ΛH = 500µm, d/ΛL = 0.4 and NR = 1 or NR = 2. Dashed curve shows the loss of the fundamental modes in non-twisted fiber. Distribution of the axial component of the Poynting vector (Sz) and azimuthal component of electric field amplitude (Eθ) are also shown for the cladding modes coupling with the HE1,1 fundamental mode at successive resonances in twisted MOF with NR = 2. Angular symmetry order of Eθ determines a total angular momentum carried by dominating angular harmonic denoted as JD.
Fig. 3
Fig. 3 Waveguide loss calculated versus wavelength for the HE1,1 (blue dotted) and HE1,1+ (red solid) fundamental modes in twisted MOF with ΛL = 3 µm, ΛH = 500µm, d/ΛL = 0.4 and NR = 3. Dashed curve shows the loss of the fundamental modes in non-twisted fiber. Distribution of the axial component of the Poynting vector (Sz) and azimuthal component of electric field amplitude (Eθ) are also shown for the cladding modes coupling with the HE1,1 fundamental mode at successive resonances. Angular symmetry order of Eθ determines the total angular momentum carried by dominating angular harmonics denoted as JD. For the cladding mode responsible for the resonant peak b there is no dominant harmonic as the three harmonics with JD = −1, 5, 11 are almost equally visible.
Fig. 4
Fig. 4 Effective refractive index in helicoidal coordinates n′cl (a) and in Cartesian coordinates ncl (b) calculated for λ = 1280 nm versus dominating orbital angular momentum LD = JDσ for selected ring-type modes in MOFs with NR = 2 (red), 3 (green) and 4 (blue). In (a) full dots correspond to modes with σ = + 1 while empty dots to modes with σ = −1. Distributions of axial component of the Poynting vector (Sz) for ring-type cladding modes in MOFs with various NR shown next to corresponding dots.
Fig. 5
Fig. 5 Waveguide loss calculated versus wavelength for HE1,1 (dotted) and HE1,1+ (solid) fundamental modes in twisted MOF with ΛL = 3 µm, ΛH = 500µm, d/ΛL = 0.4 and NR = 4. Dashed curve shows the loss of the fundamental modes in non-twisted fiber. Distribution of the axial component of the Poynting vector (Sz) and azimuthal component of electric field amplitude (Eθ) are also shown for the cladding modes coupling with the HE1,1 fundamental mode at successive resonances. Angular symmetry order of Eθ determines total angular momentum carried by dominating angular harmonics denoted as JD.
Fig. 6
Fig. 6 Waveguide loss calculated versus wavelength for HE1,1 (dotted) and HE1,1+ (solid) fundamental modes in twisted MOF with ΛL = 3 µm, ΛH = 500µm, d/ΛL = 0.4 and NR = 5 (a), NR = 7 (b) and NR = 9 (c). Dashed curve in (a) shows loss of the fundamental modes in non-twisted fiber. For Nr>5 the loss was too small to be precisely determined. Inset in (c) shows one of the polarization dependent loss peaks observed only for HE1,1+ fundamental mode. In (d) we compare the loss calculated for HE1,1+ fundamental modes in twisted MOFs with different number of hole rings NR.
Fig. 7
Fig. 7 Waveguide loss calculated versus wavelength for HE1,1 (dotted) and HE1,1+ (solid) fundamental modes in twisted MOF with ΛL = 3 µm, ΛH = 500µm, NR = 3 (a) or NR = 4 (b) and d/ΛL = 0.35 (blue), d/ΛL = 0.4 (red), d/ΛL = 0.45 (green) or d/ΛL = 0.5 (black). Dashed curve shows the loss of the fundamental modes in non-twisted fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n M ( λ )= 1+ i=1 3 A i λ 2 λ 2 Z i 2 ,
λ= λ res n ' f =n ' cl ,
n ' f/cl = n f/cl + 1 Λ H J f/cl λ.
n ' f n ' cl ( λ Λ L ) 2 ( q cl q f )( λ Λ L )( J cl J f ) Λ L Λ H ,
λ< λ res n ' cl >n ' f .
n ' cl1 | λ= λ res2 > n ' cl2 | λ= λ res2 λ res1 > λ res2 .

Metrics