Abstract

Near-infrared optical excitation enables wideband frequency tuning of terahertz quantum-cascade lasers. In this work, we demonstrate the feasibility of the approach for molecular laser absorption spectroscopy. We present a physical model which explains the observed frequency tuning characteristics by the optical excitation of an electron-hole plasma. Due to an improved excitation configuration as compared to previous work, we observe a single-mode continuous-wave frequency coverage of as much as 40 GHz for a laser at 3.1 THz. This represents, for the same device, a ten-fold improvement over the usually employed tuning by current. The method can be readily applied to a large class of devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy

Benjamin Röben, Xiang Lü, Martin Hempel, Klaus Biermann, Lutz Schrottke, and Holger T. Grahn
Opt. Express 25(14) 16282-16290 (2017)

Linewidth and tuning characteristics of terahertz quantum cascade lasers

A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie
Opt. Lett. 29(6) 575-577 (2004)

Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 25(1) 486-496 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
    [Crossref]
  3. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
    [Crossref]
  4. M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
    [Crossref]
  5. H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
    [Crossref]
  6. Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
    [Crossref]
  7. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
  8. R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
    [Crossref]
  9. H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
    [Crossref]
  10. T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
    [Crossref]
  11. R. Chhantyal-Pun, A. Valavanis, J. T. Keeley, P. Rubino, I. Kundu, Y. J. Han, P. Dean, L. H. Li, A. G. Davies, and E. H. Linfield, “Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser,” Opt. Lett. 43, 2225–2228 (2018).
    [Crossref]
  12. M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
    [Crossref]
  13. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
    [Crossref]
  14. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
    [Crossref]
  15. C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
    [Crossref]
  16. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
    [Crossref]
  17. N. R. Han, A. de Geofroy, D. P. Burghoff, C. W. I. Chan, A. W. M. Lee, J. L. Reno, and Q. Hu, “Broadband all-electronically tunable MEMS terahertz quantum cascade lasers,” Opt. Lett. 39, 3480–3483 (2014).
    [Crossref] [PubMed]
  18. K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
    [Crossref]
  19. I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22, 16595–16605 (2014).
    [Crossref]
  20. D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
    [Crossref]
  21. I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
    [Crossref]
  22. D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
    [Crossref]
  23. L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
    [Crossref]
  24. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
    [Crossref]
  25. G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
    [Crossref]
  26. S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
    [Crossref]
  27. D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
    [Crossref]
  28. M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
    [Crossref]
  29. M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
    [Crossref]
  30. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
    [Crossref]
  31. S. L. Chuang, Physics of photonic devices(Wiley, 2009), 2nd ed.
  32. C. H. Henry and D. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
    [Crossref]
  33. Y. P. Varshni, “Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (i),” physica status solidi (b) 19, 459–514 (1967).
    [Crossref]
  34. M. Born and E. Wolf, Principles of Optics(Cambridge University, 1999), 7th ed.
    [Crossref]
  35. M. Levinshtein, S. Rumyantsev, and M. Shur, eds., Handbook series on semiconductor parameters, vol. 1 (World Scientific, 1996).
  36. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
    [Crossref]
  37. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
    [Crossref]
  38. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
    [Crossref]

2018 (4)

R. Chhantyal-Pun, A. Valavanis, J. T. Keeley, P. Rubino, I. Kundu, Y. J. Han, P. Dean, L. H. Li, A. G. Davies, and E. H. Linfield, “Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser,” Opt. Lett. 43, 2225–2228 (2018).
[Crossref]

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
[Crossref]

C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

2017 (1)

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

2016 (2)

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

2015 (3)

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

2014 (4)

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

N. R. Han, A. de Geofroy, D. P. Burghoff, C. W. I. Chan, A. W. M. Lee, J. L. Reno, and Q. Hu, “Broadband all-electronically tunable MEMS terahertz quantum cascade lasers,” Opt. Lett. 39, 3480–3483 (2014).
[Crossref] [PubMed]

K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22, 16595–16605 (2014).
[Crossref]

2013 (4)

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

2012 (2)

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
[Crossref]

2011 (1)

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

2010 (2)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[Crossref]

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

2009 (2)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

2007 (4)

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

2006 (1)

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

2004 (1)

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

1998 (1)

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

1977 (1)

C. H. Henry and D. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

1967 (1)

Y. P. Varshni, “Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (i),” physica status solidi (b) 19, 459–514 (1967).
[Crossref]

Alam, T.

Allen, M. G.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

Alton, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

Amanti, M. I.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

Anders, W.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Barbieri, S.

M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

Bartalini, S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Beck, M.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

Beere, H. E.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Belenky, G.

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Belkin, M. A.

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Beltram, F.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Bethea, C. G.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Biermann, K.

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics(Cambridge University, 1999), 7th ed.
[Crossref]

Burghoff, D. P.

Cai, H.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Castellano, F.

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

Chan, C. W. I.

Chen, G.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Chen, I.-C. A.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Chen, L.

Chen, X.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Chhantyal-Pun, R.

Choa, F.-S.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Chuang, S. L.

S. L. Chuang, Physics of photonic devices(Wiley, 2009), 2nd ed.

Cohen, E. A.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Consolino, L.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Cunningham, J. E.

Curwen, C. A.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
[Crossref]

Davies, A. G.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

R. Chhantyal-Pun, A. Valavanis, J. T. Keeley, P. Rubino, I. Kundu, Y. J. Han, P. Dean, L. H. Li, A. G. Davies, and E. H. Linfield, “Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser,” Opt. Lett. 43, 2225–2228 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22, 16595–16605 (2014).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

de Geofroy, A.

De Natale, P.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Dean, P.

Delitsky, M. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Dudek, R.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Dunbar, L. A.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Eichholz, R.

Faist, J.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

Freeman, J. R.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

Frogley, M. D.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Gao, J. R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Giehler, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Giovannini, M.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Grahn, H. T.

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
[Crossref]

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Grant, P. D.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Green, R. P.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

Guo, D. K.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Hagelschuer, T.

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

Han, N. R.

Han, Y. J.

R. Chhantyal-Pun, A. Valavanis, J. T. Keeley, P. Rubino, I. Kundu, Y. J. Han, P. Dean, L. H. Li, A. G. Davies, and E. H. Linfield, “Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser,” Opt. Lett. 43, 2225–2228 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

Hempel, M.

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

Henry, C. H.

C. H. Henry and D. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

Hensley, J. M.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

Hey, R.

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Higgins, R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Hopkinson, M.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Houdré, R.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Hovenier, J. N.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Hu, Q.

N. R. Han, A. de Geofroy, D. P. Burghoff, C. W. I. Chan, A. W. M. Lee, J. L. Reno, and Q. Hu, “Broadband all-electronically tunable MEMS terahertz quantum cascade lasers,” Opt. Lett. 39, 3480–3483 (2014).
[Crossref] [PubMed]

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

Hübers, H.-W.

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Inguscio, M.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jagtap, V.

Johnson, A. M.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Jung, S.

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Kao, T.-Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Keeley, J. T.

Khanna, S. P.

Khurgin, J. B.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Klapwijk, T. M.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Klein, B.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

Kundu, I.

Kundys, D. O.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Lang, D.

C. H. Henry and D. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

Lee, A. W. M.

Li, L. H.

Linfield, E. H.

R. Chhantyal-Pun, A. Valavanis, J. T. Keeley, P. Rubino, I. Kundu, Y. J. Han, P. Dean, L. H. Li, A. G. Davies, and E. H. Linfield, “Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser,” Opt. Lett. 43, 2225–2228 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22, 16595–16605 (2014).
[Crossref]

M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Mahler, L.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Manquest, C.

Martini, R.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Müller, H. S. P.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Niehle, M.

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

Ohtani, K.

K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
[Crossref]

Park, S.-w.

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

Pavlov, S. G.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Pearson, J. C.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Phillips, C. C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Pickett, H. M.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Poynter, R. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Qin, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

Ravaro, M.

Ren, Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Reno, J. L.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
[Crossref]

N. R. Han, A. de Geofroy, D. P. Burghoff, C. W. I. Chan, A. W. M. Lee, J. L. Reno, and Q. Hu, “Broadband all-electronically tunable MEMS terahertz quantum cascade lasers,” Opt. Lett. 39, 3480–3483 (2014).
[Crossref] [PubMed]

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

Richter, H.

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Ritchie, D. A.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Röben, B.

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

Rosamond, M. C.

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

Rösch, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rubino, P.

Santarelli, G.

Scalari, G.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Schrottke, L.

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
[Crossref]

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Semenov, A. D.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Shi, S. C.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Sirigu, L.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

Sirtori, C.

Skolnick, M. S.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Suchalkin, S.

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Talukder, M. A.

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

Taschin, A.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Tober, R.

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Trampert, A.

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

Tredicucci, A.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Turcinková, D.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

Valavanis, A.

Varshni, Y. P.

Y. P. Varshni, “Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (i),” physica status solidi (b) 19, 459–514 (1967).
[Crossref]

Vitiello, M. S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Wienold, M.

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Doppler-free spectroscopy with a terahertz quantum-cascade laser,” Opt. Express 26, 6692–6699 (2018).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Frequency modulation spectroscopy with a THz quantum-cascade laser”,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

Williams, B. S.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

Wilson, L. R.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics(Cambridge University, 1999), 7th ed.
[Crossref]

Xu, J.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

Zervos, C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

ACS Photonics (1)

I. Kundu, P. Dean, A. Valavanis, J. R. Freeman, M. C. Rosamond, L. H. Li, Y. J. Han, E. H. Linfield, and A. G. Davies, “Continuous frequency tuning with near constant output power in coupled y-branched terahertz quantum cascade lasers with photonic lattice,” ACS Photonics 5, 2912–2920 (2018).
[Crossref]

AIP Advances (1)

M. Hempel, B. Röben, M. Niehle, L. Schrottke, A. Trampert, and H. T. Grahn, “Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination,” AIP Advances 7, 055201 (2017).
[Crossref]

Appl. Phys. Lett. (14)

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85, 1674–1676 (2004).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102, 181113 (2013).
[Crossref]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90, 141114 (2007).
[Crossref]

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90, 053505 (2007).
[Crossref]

G. Chen, R. Martini, S.-w. Park, C. G. Bethea, I.-C. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, “Optically induced fast wavelength,” Appl. Phys. Lett. 97, 011102 (2010).
[Crossref]

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106, 131107 (2015).
[Crossref]

D. K. Guo, H. Cai, M. A. Talukder, X. Chen, A. M. Johnson, J. B. Khurgin, and F.-S. Choa, “Near-infrared induced optical quenching effects on mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 104, 251102 (2014).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108, 191106 (2016).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89, 061115 (2006).
[Crossref]

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

T. Hagelschuer, M. Wienold, H. Richter, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser,” Appl. Phys. Lett. 109, 191101 (2016).
[Crossref]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[Crossref]

C. A. Curwen, J. L. Reno, and B. S. Williams, “Terahertz quantum cascade VECSEL with watt-level output power,” Appl. Phys. Lett. 113, 011104 (2018).
[Crossref]

K. Ohtani, M. Beck, and J. Faist, “Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 011107 (2014).
[Crossref]

Applied Physics Letters (1)

S. Suchalkin, S. Jung, R. Tober, M. A. Belkin, and G. Belenky, “Optically tunable long wavelength infrared quantum cascade laser operated at room temperature,” Applied Physics Letters 102, 011125 (2013).
[Crossref]

Electron. Lett. (1)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45, 1030–1031 (2009).
[Crossref]

eNature Photonics (1)

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” eNature Photonics 9, 42–47 (2015).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5, 539–545 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Nature Photonics (3)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nature Photonics 6, 525–528 (2012).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nature Photonics 3, 732–737 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

C. H. Henry and D. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

physica status solidi (b) (1)

Y. P. Varshni, “Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (i),” physica status solidi (b) 19, 459–514 (1967).
[Crossref]

Sensors (1)

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “ THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).

Other (3)

M. Born and E. Wolf, Principles of Optics(Cambridge University, 1999), 7th ed.
[Crossref]

M. Levinshtein, S. Rumyantsev, and M. Shur, eds., Handbook series on semiconductor parameters, vol. 1 (World Scientific, 1996).

S. L. Chuang, Physics of photonic devices(Wiley, 2009), 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematics of the experimental setup. The QCL (yellow box) is mounted in a He-flow cryostat. BS - dichroic beamsplitter; OL - objective lens; Ge:Ga - photoconductive Ge:Ga detector. (b) Microscope image of the illuminated QCL facet. The excitation spot with a diameter of approximately 90 μm originates from a multimode diode laser emitting at 809 nm and exhibits essentially a flat-top profile. (c) Calculated profile of the waveguide mode in the vertical (epitaxial-growth) direction for different frequencies (the mode propagates perpendicular to y along the waveguide ridge). The active region (a. r.) has a height of 10 μm and corresponds to the QCL ridge structure in (b).
Fig. 2
Fig. 2 (a) Detector signal as a function of the diode laser current for 1 mbar of methanol. The QCL is operated at a constant current of 380 mA at 37 K (threshold value: 300 mA). (b) QCL frequency as a function of the incident diode laser power. Squaredots refer to the frequencies of the methanol absorption lines in (a), which were identified according to the JPL molecular catalogue. Solid line: square-root parameter fit to the data according to Eq. (1). Inset: QCL emission spectrum (without NIR excitation) as measured with a Fourier transform spectrometer (3 GHz resolution) confirming single-mode operation.
Fig. 3
Fig. 3 Measured transmission spectrum after frequency calibration (top) and simulated methanol spectrum (bottom).
Fig. 4
Fig. 4 (a) Calculated change of the real part of the refractive index close to the facet of the excited GaAs substrate for normalized incident photon fluxes S 0 = b S N, where SN is the photon flux for which ε = 0 at the surface (z = 0). For b = 10, the calculated change of the imaginary part of the refractive index is also shown, as well as further results for different values of τ nr. (b) Calculated shift of the resonance frequency as a function of intensity ( ω NIR S 0) for a one-dimensional cavity. Numerical results are depicted for different values of τ nr. The excitation wavelength is 810 nm, L = 1 mm, ν = 3.3 THz, α = 10 4 cm−1, ε s = 12.8, and B = 1.8 × 10 8  cm3 s−1 [35].
Fig. 5
Fig. 5 (a) Methanol transmission spectrum as obtained with a 0.66-mm-long 3.1-THz QCL (device B) operated at 40 K and 295 mA. The transmission is displayed versus the square root of the normalized NIR power. (b) Frequency calibration for the modes with the largest LIFT range of each laser according to the JPL molecular catalog revealing a spectral coverage of almost 40 GHz for device B. The solid lines refer to fits to Eq. (1). (c) Normalized QCL intensity as a function of the normalized NIR power. The labeled dip in the characteristics of device B is due to atmospheric water absorption.
Fig. 6
Fig. 6 Schematics of the considered two-section resonator. Section B is optically excited while A remains unaffected. The thick black lines mark the rear and front facet of the cavity.

Tables (2)

Tables Icon

Table 1 Current and temperature tuning parameters for the investigated QCLs: maximum frequency coverage Δ ν I QCL for a variation of the QCL current (IQCL) and Δ ν T for a variation of the temperature (T); tuning coefficient d ν / d I QCL for frequency and d ν / d I QCL for temperature. The last column contains the maximum LIFT range Δ ν LIFT. The active region design of the corresponding QCLs are given in the respective references. Devices B and C are fabricated from different wafers with small variations of the layer thicknesses.

Tables Icon

Table 2 Single-mode frequency coverage by LIFT for the three QCLs.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

ν ( P ) = ν 0 + a L P
n eh τ nr + B n eh 2 = G ,
n eh = G B .
G ( z ) = G 0 exp  ( α z ) .
ε ( z ) = ε s ( 1 ω p 2 ω 2 ) ,
ω p 2 = n eh ( z ) e 2 ε 0 ε s m * .
Δ ν e 2 2 π 2 ε 0 ε s m * 1 L ν S 0 B α ,
Δ ν e 2 2 π 2 ε 0 ε s m * L ν ω NIR A B α P = a L P .
δ ν = Δ ν 2 δ P P .
( E 1 H 1 ) = ( cos  ( k l l ) i Z l sin  ( k l l ) i Z l sin  ( k l l ) cos  ( k l l ) ) ( E 0 H 0 ) .
M l = ( cos  ( k l l ) 1 k l sin  ( k l l ) k l sin  ( k l l ) cos  ( k l l ) ) .
M = B A = ( M 11 M 12 M 21 M 22 ) .
t = 2 i k 0 e i k 0 L 1 M 21 + k 0 2 M 12 + i k 0 ( M 11 + M 22 ) .
B = Δ z 0 ( 1 Δ z k B 2 Δ z 1 ) = ( 1 L B k B 2 ( z ) d z 1 ) .
ε ( z ) = ε s ( 1 ω p 2 ω 2 ) ,
B = ( 1 L B k s 2 L B + k s 2 ω p 2 ( z ) ω 2 d z 1 )
B = L B 0 ( 1 0 k s 2 ω p 2 ( z ) ω 2 d z 1 ) .
A = ( 1 δ k s k s L δ k s k s L 1 )
M = ( 1 δ k s k s L ( 19 )   [ 1 + δ k s k s L ω p 2 ω 2 d z ] ) .
0 = M 21 + k 0 2 M 12 + i k 0 ( M 11 + M 22 ) .
0 = δ k s L ( 1 + k 0 2 k s 2 ) k s ω p 2 ω 2 d z + 2 i k 0 k s + i δ k s k 0 L ω p 2 ω 2 d z .
Δ k 0 k 0 = Δ ν ν ε s ε s + 1 1 L ω p 2 ω 2 d z .
ω p 2 = n e h ( z ) e 2 ε 0 ε s m * = e 2 ε 0 ε s m * G B = e 2 ε 0 ε s m * α S 0 B e α z ,
Δ ν e 2 2 π 2 ε 0 ε s m * 1 L ν S 0 B α .

Metrics