Abstract

We present an induced reflection response analogue to electromagnetically induced transparency (EIT) in a novel Tamm plasmon system, consisting of a thin metal film and a Bragg grating with a defect layer. The results show that an induced narrow peak can be generated in the original broad reflection dip, which is attributed to the coupling and interference between the Tamm plasmon and defect modes in the grating structure. It is found that the EIT-like induced reflection is strongly dependent on the thickness of defect layer, grating period number between the metal and defect layers, thickness of Bragg grating layer, refractive index of defect layer, and thickness of metal film. Additionally, the induced reflection can be dynamically tuned by adjusting the angle of incident light. The numerical simulations agree extremely well with theoretical calculations. The coupling strength between the Tamm plasmon and defect modes is determined by the above parameters. These results will provide a new avenue for light field control and devices in multilayer photonic systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband Tamm plasmon polariton

Andrey M. Vyunishev, Rashid G. Bikbaev, Sergey E. Svyakhovskiy, Ivan V. Timofeev, Pavel S. Pankin, Stanislav A. Evlashin, Stepan Ya. Vetrov, Sergey A. Myslivets, and Vasily G. Arkhipkin
J. Opt. Soc. Am. B 36(8) 2299-2305 (2019)

Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure

Jigang Hu, Enxu Yao, Weiqiang Xie, Wei Liu, Dongmei Li, Yonghua Lu, and Qiwen Zhan
Opt. Express 27(13) 18642-18652 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  3. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
    [Crossref] [PubMed]
  4. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
    [Crossref] [PubMed]
  5. S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
    [Crossref] [PubMed]
  6. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
    [Crossref] [PubMed]
  7. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
    [Crossref] [PubMed]
  8. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
    [Crossref] [PubMed]
  9. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
    [Crossref] [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  11. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
    [Crossref] [PubMed]
  12. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  13. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
    [Crossref] [PubMed]
  14. X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
    [Crossref]
  15. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [Crossref] [PubMed]
  16. Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
    [Crossref] [PubMed]
  17. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
    [Crossref]
  18. Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
    [Crossref] [PubMed]
  19. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
    [Crossref] [PubMed]
  20. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
    [Crossref]
  21. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  24. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  25. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  26. X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
    [Crossref] [PubMed]
  27. R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
    [Crossref]
  28. Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
    [Crossref]
  29. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
    [Crossref] [PubMed]
  30. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  31. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
    [Crossref] [PubMed]
  32. Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
    [Crossref] [PubMed]
  33. A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [Crossref]
  34. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  35. M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  36. C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
    [Crossref]
  37. T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
    [Crossref]
  38. O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
    [Crossref] [PubMed]
  39. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
    [Crossref] [PubMed]
  40. C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
    [Crossref]
  41. R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
    [Crossref]
  42. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
    [Crossref]
  43. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
    [Crossref]
  44. K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
    [Crossref] [PubMed]
  45. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
    [Crossref] [PubMed]
  46. Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
    [Crossref]
  47. G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
    [Crossref]
  48. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
    [Crossref] [PubMed]
  49. areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  50. T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
    [Crossref]
  51. S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
    [Crossref] [PubMed]
  52. S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017).
    [Crossref]
  53. A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
    [Crossref] [PubMed]
  54. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref] [PubMed]
  55. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
    [Crossref]
  56. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  57. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  58. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  59. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  60. J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
    [Crossref]
  61. J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
    [Crossref]
  62. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
    [Crossref] [PubMed]
  63. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
    [Crossref] [PubMed]
  64. J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
    [Crossref]
  65. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [Crossref]
  66. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [Crossref]
  67. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
    [Crossref] [PubMed]
  68. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
    [Crossref] [PubMed]
  69. C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
    [Crossref]

2018 (5)

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
[Crossref] [PubMed]

2017 (10)

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

2016 (6)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

2014 (5)

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

2013 (7)

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

2012 (7)

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

2011 (5)

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

2010 (4)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

2009 (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

2008 (3)

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[Crossref] [PubMed]

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

2006 (1)

2004 (2)

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

2003 (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

2002 (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdala, N. L.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Aberra Guebrou, S.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Abram, R.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Aizin, G.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Alaee, R.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Allen, S.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Angelomé, P. C.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Argyropoulos, C.

Auguié, B.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Baumann, V.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Baumberg, J.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Beere, H.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Bellessa, J.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Bethke, D.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Bloch, J.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boyd, R.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Bozhevolnyi, S.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brand, S.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Braun, T.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Brolo, A.

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brückner, R.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Brucoli, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Cai, B.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Chamberlain, J.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chang, H.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Chen, C.

Chen, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, K.

Chen, S.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Chen, W.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Cheng, H.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Christmann, G.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coulson, C.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dai, X.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

de Vasconcellos, S. M.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Deng, J.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Deng, Y.

Deng, Z. L.

Dong, J. W.

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Duan, X.

Dyer, G.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Egorov, A. Yu.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fainstein, A.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fan, D.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Fan, Y.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Farrer, I.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Feng, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Frob, H.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Fuertes, M. C.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fuller, K.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Gan, X.

Garrido Alzar, C. L.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Gauthron, K.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Gazzano, O.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Gong, Q.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Gong, Y.

Gramotnev, D.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Greffet, J. J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Grine, A.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Grossmann, C.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Gu, M.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Gubaydullin, A. R.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Guo, J.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Gutowski, J.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hintschich, S.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hofling, S.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Homeyer, E.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Hommel, D.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Hong, M.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Hou, Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Hu, F.

Hu, X.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Huang, S.

Hugonin, J. P.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Iff, O.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Ishihara, T.

Ivanov, K. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Jeng, S.

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Jiang, L.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Jiang, X.

Jiang, Y.

Jiao, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jomaa, M. H.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Kaliteevski, M.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Kalitteevski, M.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kamp, M.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kavokin, A.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kim, K.

Klein, T.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Klembt, S.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Kolykhalova, E. D.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Laverdant, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lederer, F.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Lee, K. J.

Lei, D. Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Lemaitre, A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lemaître, A.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Leo, K.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Leong, E. S.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Le-Van, Q.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Lheureux, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Li, G. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Li, X.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Li, Y.

Li, Z.

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Liew, T.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Liew, T. Y.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Liu, J. Q.

Liu, L.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, S. D.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

Long, Y.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

Lu, S.

Lu, Y.

Lukiyanchuk, B.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Luo, X.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

Lyssenko, V.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Ma, Q.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Mao, D.

Martinez, M. A. G.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mikhrin, V.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[Crossref] [PubMed]

Ming, H.

Ning, T.

Nori, F.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nussenzveig, P.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Ong, H. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Ostatnický, T.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Özdemir, S. K.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peng, B.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peyronel, T.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Plenet, J.

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Pozina, G.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Qin, F.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Qiu, C.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Qiu, M.

Rahman, S. S.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Rahmani, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Ramezani, M.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Ranjbar, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Rao, Y. J.

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Ren, H.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Reno, J.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Ritchie, D.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Rockstuhl, C.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Rosenberger, A.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Sasin, M.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Sasin, M. E.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Schneider, C.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Scholz, R.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Sebald, K.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Seisyan, R.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Senellart, P.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Shaner, E.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Shelykh, I.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Smith, D.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Smolyaninov, I.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Soler Illia, G. J. A. A.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Song, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Sudzius, M.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Sun, B.

Sun, H.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Symonds, C.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Tang, C.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Teng, J. H.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Tian, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Tiecke, T. G.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Van Hoof, N.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Vasil’ev, A.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Voisin, P.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Wang, F.

Wang, G.

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

Wang, H.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Wang, L.

Wang, L. L.

Wang, P.

Wang, S.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Wang, X.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, S.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Wen, S. C.

Wu, C.

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Wu, J.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Wu, J. W.

Wu, L.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Xia, S. X.

Xiang, Y.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, S.

Yang, D.

Yang, G.

Yang, H.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Yang, L.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Yang, X.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Yi, H.

You, Q.

Yu, P.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Yu, R.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Yue, Z.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Zakhidov, A.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Zang, X.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zayats, A.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, X.

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Zhang, Q.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zhao, J.

Zheng, J.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Zhou, X.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Zhou, Y.

Zhou, Z.

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

ACS Nano (1)

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

AIP Adv. (1)

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Am. J. Phys. (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

J. Appl. Phys. (1)

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Nano Lett. (4)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Nanotechnology (1)

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (4)

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (11)

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Photon. Res. (2)

Phys. Rev. A (1)

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Phys. Rev. Lett. (3)

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Plasmonics (1)

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

Prog. Electromagnetics Res. (1)

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Sci. Adv. (1)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Sci. Rep. (6)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Science (1)

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the Tamm plasmon multilayer system. The thicknesses of metal, SiO2, Si3N4, and Al2O3 layers are denoted by da, dA, dB, and ds, respectively. The grating period number is N. The incident angle of light is θ.
Fig. 2
Fig. 2 (a) Reflection spectra of the multilayer photonic system without and with the defect layer (i. e., ds = 0 and 258 nm). The circles and curves stand for the FDTD simulation and TMM theoretical results, respectively. The inset shows the three-level system. (b)-(c): Field distributions of |E|2 at the wavelength of 1556 nm in the multilayer systems without and with the defect layer. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.
Fig. 3
Fig. 3 (a) Evolution of reflection spectrum with the defect layer thickness ds. (b) Wavelengths (λp) of induced reflection peak with different ds. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.
Fig. 4
Fig. 4 FDTD simulation (a) and TMM theoretical (b) results of reflection spectra with different grating period numbers between the defect and metal layers. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, and θ = 0°.
Fig. 5
Fig. 5 (a) Evolution of reflection spectrum with the thickness of Si3N4 layer dB. (b) Wavelengths (λp) of induced reflection peak with different dB. Here, da = 30 nm, dA = 275 nm, ds = 258 nm, N = 24, and θ = 0°.
Fig. 6
Fig. 6 (a) Evolution of reflection spectrum with the refractive index of defect layer ns when da = 30 nm. (b) Evolution of reflection spectrum with the thickness of metal film da when ns = 1.76. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, dA = 275 nm, dB = 160 nm, ds = 258 nm, and N = 24.
Fig. 7
Fig. 7 Evolution of reflection spectrum with the incident angle θ for TM (a) and TE (b) polarized light. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, ns = 1.76, and N = 24.
Fig. 8
Fig. 8 Dependence of coupling strength κ on the thicknesses of defect layer ds (a), period number of Bragg grating between metal and defect layers (b), thickness of Si3N4 layer dB (c), refractive index of defect layer ns (d), thickness of metal film da (e), incident angle of light θ (f). The structural parameters in (a)-(f) are the same as those in Figs. 3–5, 6(a), 6(b), and 7, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M j = 1 2 n j 1 cos θ j 1 ( n j 1 cos θ j + n j cos θ j 1 n j 1 cos θ j n j cos θ j 1 n j 1 cos θ j n j cos θ j 1 n j 1 cos θ j + n j cos θ j 1 ) ,
P j = ( exp ( i 2 π d j n j cos θ j / λ ) 0 0 exp ( i 2 π d j n j cos θ j / λ ) ) ,

Metrics