Abstract

Microscopic many-body theory coupled with Maxwell’s equation is used to study dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor lasers is associated with characteristic non-equilibrium carrier dynamics, which causes significant deformations of the quasi-equilibrium gain and carrier inversion. Extended numerical simulations are employed to efficiently investigate the parameter space to identify the regime for dual-wavelength operation. Using a frequency selective intracavity etalon, two families of modes are stabilized with dynamical interchange of the strongest emission peaks. For this operation mode, anti-correlated intensity noise is observed in agreement with the experiment. A method using effective frequency selective filtering is suggested for stabilization of genuine dual-wavelength output.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-equilibrium ultrashort pulse generation strategies in VECSELs

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney
Optica 4(4) 412-417 (2017)

Fully microscopic modeling of mode locking in microcavity lasers

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney
J. Opt. Soc. Am. B 33(1) 75-80 (2016)

Modeling and optimization of transverse modes in vertical-external-cavity surface-emitting lasers

Alexandre Laurain, Jörg Hader, and Jerome V. Moloney
J. Opt. Soc. Am. B 36(4) 847-854 (2019)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
    [Crossref]
  2. A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
    [Crossref]
  3. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
    [Crossref]
  4. A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18, 093003 (2016).
    [Crossref]
  5. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
    [Crossref]
  6. T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
    [Crossref]
  7. F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
    [Crossref] [PubMed]
  8. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
    [Crossref]
  9. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
    [Crossref]
  10. A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
    [Crossref]
  11. Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
    [Crossref]
  12. O. Axner, M. Lejon, I. Magnusson, H. Rubinsztein-Dunlop, and S. Sjöström, “Detection of traces in semiconductor materials by two-color laser-enhanced ionization spectroscopy in flames,” Appl. Opt. 26, 3521–3525 (1987).
    [Crossref] [PubMed]
  13. J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
    [Crossref]
  14. J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
    [Crossref]
  15. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
    [Crossref] [PubMed]
  16. S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS’93 Conference Proceedings, (IEEE, 1993), pp. 578–579.
  17. J.-M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
    [Crossref]
  18. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
    [Crossref]
  19. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  20. S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
    [Crossref]
  21. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [Crossref]
  22. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
    [Crossref] [PubMed]
  23. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [Crossref]
  24. M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
    [Crossref]
  25. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
    [Crossref]
  26. T. Leinonen, S. Ranta, A. Laakso, Y. Morozov, M. Saarinen, and M. Pessa, “Dual-wavelength generation by vertical external cavity surface-emitting laser,” Opt. Express 15, 13451–13456 (2007).
    [Crossref] [PubMed]
  27. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18, 5008–5014 (2010).
    [Crossref] [PubMed]
  28. A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
    [Crossref]
  29. M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
    [Crossref]
  30. M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
    [Crossref]
  31. M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
    [Crossref]
  32. S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, “Intensity noise correlations in a two-frequency VECSEL,” Opt. Express 21, 2538–2550 (2013).
    [Crossref] [PubMed]
  33. I. Koryukin and V. Povyshev, “Antiphase dynamics of a multimode quantum well semiconductor laser,” Laser Phys. 17, 680–683 (2007).
    [Crossref]
  34. M. Ahmed and M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
    [Crossref]
  35. A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
    [Crossref]
  36. M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
    [Crossref]
  37. A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
    [Crossref]
  38. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009), 5th ed.
    [Crossref]
  39. J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
    [Crossref]
  40. I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
    [Crossref]
  41. I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
    [Crossref]
  42. I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
    [Crossref]
  43. I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
    [Crossref]
  44. J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
    [Crossref]
  45. T. Kuhn, “Density matrix theory of coherent ultrafast dynamics,” in Theory of Transport Properties of Semiconductor Nanostructures, (Springer, 1998), pp. 173–214.
    [Crossref]
  46. I. Waldmüller, “Intersubband dynamics in semiconductor quantum wells-linear and nonlinear response of quantum confined electrons,” Ph.D. thesis, Technische Universität Berlin (2005).
  47. O. Madelung, W. von der Osten, and U. Rössler, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series Group III: Crystal and Solid State Physics (Springer-Verlag, 1987).
  48. J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
    [Crossref]
  49. J. L. Smith, “Surface damage of GaAs from 0.694-and 1.06-μ laser radiation,” J. Appl. Phys. 43, 3399–3402 (1972).
    [Crossref]
  50. C. Sam, “Laser damage of GaAs and ZnTe at 1.06 μ,” Appl. Opt. 12, 878–879 (1973).
    [Crossref] [PubMed]
  51. H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
    [Crossref]
  52. Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer,” IEEE J. Quantum Electron. 33, 1163–1169 (1997).
    [Crossref]
  53. T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
    [Crossref]
  54. V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
    [Crossref]
  55. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
    [Crossref]
  56. C.-L. Wang and C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
    [Crossref]
  57. K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel fabry-perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
    [Crossref]

2018 (3)

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

2017 (2)

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

2016 (6)

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18, 093003 (2016).
[Crossref]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

2015 (2)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (4)

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
[Crossref]

2011 (2)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

2010 (2)

2008 (1)

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

2007 (2)

2006 (2)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

2004 (3)

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
[Crossref] [PubMed]

2003 (1)

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
[Crossref]

2002 (2)

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

M. Ahmed and M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[Crossref]

2001 (2)

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[Crossref]

1999 (1)

J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[Crossref]

1997 (2)

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel fabry-perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[Crossref]

Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer,” IEEE J. Quantum Electron. 33, 1163–1169 (1997).
[Crossref]

1995 (3)

1994 (2)

J.-M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[Crossref]

C.-L. Wang and C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

1993 (1)

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

1990 (1)

J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
[Crossref]

1987 (1)

1973 (1)

1972 (1)

J. L. Smith, “Surface damage of GaAs from 0.694-and 1.06-μ laser radiation,” J. Appl. Phys. 43, 3399–3402 (1972).
[Crossref]

Addamane, S.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

Ahmed, M.

M. Ahmed and M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[Crossref]

Albrecht, A.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Alfieri, C. G. E.

Alouini, M.

Amzajerdian, F.

Axner, O.

Baili, G.

Baker, C.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

Baker, C. W.

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

Balakrishnan, G.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

Balle, S.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Barnes, B. W.

Bäumner, A.

A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

Beyon, J. Y.

Breede, M.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Bretenaker, F

Bretenaker, F.

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Burford, R. O.

J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
[Crossref]

Carr, T.

T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[Crossref]

Chang, J.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Chernikov, A.

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

Cole, G.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Dagenais, M.

S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS’93 Conference Proceedings, (IEEE, 1993), pp. 578–579.

Davis, R. E.

Dawson, J. W.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

De, S.

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Dineen, C.

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Dolfi, D.

Donhuijsen, K.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

El Amili, A.

Fallahi, M.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Follman, D.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Fukushi, Y.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Furfaro, L.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Gaafar, M.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Ghosh, R.

Giannini, N.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Gini, E.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Giudici, M.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Goldfarb, F.

Golling, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Hachair, X.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Hader, J.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
[Crossref]

J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[Crossref]

Haug, H.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009), 5th ed.
[Crossref]

Hein, G.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Heinen, B.

F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
[Crossref] [PubMed]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Heu, P.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Hoffmann, S.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Hofmann, M.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Hu, B. B.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Ismail, S.

Itsuji, T.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Javaloyes, J.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Jiang, S.

S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS’93 Conference Proceedings, (IEEE, 1993), pp. 578–579.

Jin, G.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Jones, R. J.

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

Kavaya, M. J.

Keller, U.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Kilen, I.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

Kleine-Ostmann, T.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Klenner, A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Knobloch, P.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Koch, G. J.

Koch, M.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
[Crossref] [PubMed]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
[Crossref]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Koch, S.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[Crossref]

Koch, S. W.

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
[Crossref]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
[Crossref]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009), 5th ed.
[Crossref]

Koch, S.W.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Kolesik, M.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

Koryukin, I.

I. Koryukin and V. Povyshev, “Antiphase dynamics of a multimode quantum well semiconductor laser,” Laser Phys. 17, 680–683 (2007).
[Crossref]

Kubota, O.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Kuhn, T.

T. Kuhn, “Density matrix theory of coherent ultrafast dynamics,” in Theory of Transport Properties of Semiconductor Nanostructures, (Springer, 1998), pp. 173–214.
[Crossref]

Kunert, B.

F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
[Crossref] [PubMed]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Laakso, A.

Langbein, J. O.

J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
[Crossref]

Laurain, A.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

Lee, K.-S.

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel fabry-perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[Crossref]

Leinonen, T.

Lejon, M.

Link, S. M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Liu, J.-M.

J.-M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[Crossref]

Liu, Y.

Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer,” IEEE J. Quantum Electron. 33, 1163–1169 (1997).
[Crossref]

Liu, Z.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Ludewig, P.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

Madelung, O.

O. Madelung, W. von der Osten, and U. Rössler, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series Group III: Crystal and Solid State Physics (Springer-Verlag, 1987).

Magnusson, I.

Mandel, P.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[Crossref]

Mangold, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Matus, M.

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Mayer, A. S.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Meyn, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Miller, B. I.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

Miranda, B.-X.

Möller, C.

Moloney, J.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[Crossref]

Moloney, J. V.

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Non-equilibrium ultrashort pulse generation strategies in VECSELs,” Optica 4, 412–417 (2017).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1, 192–197 (2014).
[Crossref]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
[Crossref]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
[Crossref]

Moloney, J.V.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Morozov, Y.

Morvan, L.

Newkirk, M. A.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Nuss, M. C.

Ohtsubo, J.

Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer,” IEEE J. Quantum Electron. 33, 1163–1169 (1997).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Ouchi, T.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Pal, V.

Pan, C.-L.

C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[Crossref] [PubMed]

C.-L. Wang and C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

Park, N.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

Pedaci, F.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Pessa, M.

Petros, M.

Pieroux, D.

T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[Crossref]

Pierz, K.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Pillet, G.

Povyshev, V.

I. Koryukin and V. Povyshev, “Antiphase dynamics of a multimode quantum well semiconductor laser,” Laser Phys. 17, 680–683 (2007).
[Crossref]

Qi, H.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Quante, J.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

Quarterman, A. H.

A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
[Crossref]

Radziunas, M.

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

Rahimi-Iman, A.

Ranta, S.

Rössler, U.

O. Madelung, W. von der Osten, and U. Rössler, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series Group III: Crystal and Solid State Physics (Springer-Verlag, 1987).

Rubinsztein-Dunlop, H.

Ruiz Perez, A.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

Saarinen, M.

Sagnes, I.

Sam, C.

Scheller, M.

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Shakfa, M.

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

Shakfa, M. K.

Sheik-Bahae, M.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Shu, C.

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel fabry-perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[Crossref]

Simpson, T. B.

J.-M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[Crossref]

Singh, U. N.

Sjöström, S.

Slater, L. E.

J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
[Crossref]

Smith, J. L.

J. L. Smith, “Surface damage of GaAs from 0.694-and 1.06-μ laser radiation,” J. Appl. Phys. 43, 3399–3402 (1972).
[Crossref]

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Sperling, M.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Stolz, W.

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
[Crossref] [PubMed]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Struckmeier, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Tilma, B. W.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Town, G.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

Tredicce, J.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Trofimoff, P.

Tronciu, V.

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

Tropper, A. C.

A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Vahala, K. J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

Vay, S.

Viktorov, E. A.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

von der Osten, W.

O. Madelung, W. von der Osten, and U. Rössler, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series Group III: Crystal and Solid State Physics (Springer-Verlag, 1987).

Waldburger, D.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Waldmüller, I.

I. Waldmüller, “Intersubband dynamics in semiconductor quantum wells-linear and nonlinear response of quantum confined electrons,” Ph.D. thesis, Technische Universität Berlin (2005).

Wang, C.-L.

C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[Crossref] [PubMed]

C.-L. Wang and C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

Wang, Q.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Wang, T.-L.

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Wichmann, M.

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
[Crossref] [PubMed]

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21, 31940–31950 (2013).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

Wilcox, K. G.

A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
[Crossref]

Wolfrum, M.

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

Wünsche, H.-J.

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

Xia, W.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Yacomotti, A. M.

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

Yamada, M.

M. Ahmed and M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[Crossref]

Yamaguchi, S.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Yamamoto, S.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Yang, Z.

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

Yarborough, J. M.

Yu, J.

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Zhang, F.

Zhang, X.

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

Zhou, J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Zimmermann, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

Adv. Semicond. Lasers (1)

A. C. Tropper, A. H. Quarterman, and K. G. Wilcox, “Ultrafast vertical-external-cavity surface-emitting semiconductor lasers,” Adv. Semicond. Lasers 86, 269–300 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (7)

C.-L. Wang and C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “VECSEL design for high peak power ultrashort mode-locked operation,” Appl. Phys. Lett. 112, 262105 (2018).
[Crossref]

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98, 071103 (2011).
[Crossref]

A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, and J. V. Moloney, “Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses,” Appl. Phys. Lett. 113, 121113 (2018).
[Crossref]

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

A. Chernikov, M. Wichmann, M. Shakfa, M. Scheller, J. Moloney, S. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 041114 (2012).
[Crossref]

Electron. Lett. (3)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516 (2012).
[Crossref]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Z. Yang, D. Follman, A. Albrecht, P. Heu, N. Giannini, G. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54, 430–432 (2018).
[Crossref]

IEEE J. Quantum Electron. (5)

J.-M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[Crossref]

J. Hader, J. Moloney, and S. Koch, “Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[Crossref]

M. Ahmed and M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002).
[Crossref]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel fabry-perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[Crossref]

Y. Liu and J. Ohtsubo, “Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer,” IEEE J. Quantum Electron. 33, 1163–1169 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Scheller, C. W. Baker, S. W. Koch, and J. V. Moloney, “Dual-wavelength passively mode-locked semiconductor disk laser,” IEEE Photonics Technol. Lett. 28, 1325–1327 (2016).
[Crossref]

M. Wichmann, G. Town, J. Quante, M. Gaafar, A. Rahimi-Iman, W. Stolz, S. Koch, and M. Koch, “Antiphase noise dynamics in a dual-wavelength vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 27, 2039–2042 (2015).
[Crossref]

M. Scheller, C. W. Baker, S. W. Koch, J. V. Moloney, and R. J. Jones, “High power dual-wavelength VECSEL based on a multiple folded cavity,” IEEE Photonics Technol. Lett. 29, 790–793 (2017).
[Crossref]

J. Appl. Phys. (2)

H. Qi, Q. Wang, X. Zhang, Z. Liu, Z. Liu, J. Chang, W. Xia, and G. Jin, “Investigation on damage process of GaAs induced by 1064 nm continuous laser,” J. Appl. Phys. 103, 033106 (2008).
[Crossref]

J. L. Smith, “Surface damage of GaAs from 0.694-and 1.06-μ laser radiation,” J. Appl. Phys. 43, 3399–3402 (1972).
[Crossref]

J. Geophys. Res. Solid Earth (1)

J. O. Langbein, R. O. Burford, and L. E. Slater, “Variations in fault slip and strain accumulation at parkfield, california: Initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. Solid Earth 95, 2533–2552 (1990).
[Crossref]

J. Opt. (1)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18, 093003 (2016).
[Crossref]

JOSA B (2)

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” JOSA B 21, 1758–1771 (2004).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” JOSA B 33, 75–80 (2016).
[Crossref]

Laser Photon. Rev. (1)

T.-L. Wang, B. Heinen, J. Hader, C. Dineen, M. Sparenberg, A. Weber, B. Kunert, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W,” Laser Photon. Rev. 6, L12–L14 (2012).
[Crossref]

Laser Phys. (1)

I. Koryukin and V. Povyshev, “Antiphase dynamics of a multimode quantum well semiconductor laser,” Laser Phys. 17, 680–683 (2007).
[Crossref]

Light. Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light. Sci. Appl. 4, e310 (2015).
[Crossref]

Opt. Commun. (1)

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S.W. Koch, and J.V. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (3)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Phys. Rev. A (2)

A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004).
[Crossref]

T. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[Crossref]

Phys. Rev. E (1)

V. Tronciu, H.-J. Wünsche, M. Wolfrum, and M. Radziunas, “Semiconductor laser under resonant feedback from a fabry-perot resonator: Stability of continuous-wave operation,” Phys. Rev. E 73, 046205 (2006).
[Crossref]

Phys. Status Solidi B (1)

A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi B 248, 843–846 (2011).
[Crossref]

Sci. Reports (1)

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Brain tumor imaging of rat fresh tissue using terahertz spectroscopy,” Sci. Reports 6, 30124 (2016).
[Crossref]

Semicond. Sci. Technol. (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. Moloney, and S. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32, 013002 (2016).
[Crossref]

Solid-State Electron. (1)

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47, 513–521 (2003).
[Crossref]

Other (5)

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009), 5th ed.
[Crossref]

T. Kuhn, “Density matrix theory of coherent ultrafast dynamics,” in Theory of Transport Properties of Semiconductor Nanostructures, (Springer, 1998), pp. 173–214.
[Crossref]

I. Waldmüller, “Intersubband dynamics in semiconductor quantum wells-linear and nonlinear response of quantum confined electrons,” Ph.D. thesis, Technische Universität Berlin (2005).

O. Madelung, W. von der Osten, and U. Rössler, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series Group III: Crystal and Solid State Physics (Springer-Verlag, 1987).

S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS’93 Conference Proceedings, (IEEE, 1993), pp. 578–579.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A VECSEL schematic showing a cross section of a linear cavity setup. The light field (yellow arrows) propagates in the external air cavity between the gain chip (left) and an output coupling mirror (right). The optically pumped gain chip consists of: a DBR on top of a heat spreader, a barrier region with optically active QWs (red), a cap layer, and (optionally) a dispersion compensating coating. An etalon can be placed in the cavity to facilitate dual-wavelength operation.
Fig. 2
Fig. 2 (a) The linear QW gain computed without an intracavity field (dashed black) and the non-equilibrium round-trip amplification during dual-wavelength operation (blue). The solid black lines indicates the output coupling loss and the vertical grey lines the spectral location of the dual-wavelength output. (b) The family of blue curves depict a time snapshot of the non-equilibrium carrier inversion of each QW in the gain medium. The black dashed curve depicts carriers in a background quasi-equilibrium distributions. The momentum is scaled using the Bohr radius a0 = 1.07 · 10−8 m.
Fig. 3
Fig. 3 Overview of asymptotic dual-wavelength solutions (color surface) for frequencies (ω1, ω2) relative to peak gain computed with the injection mapping scheme for a specific gain chip. The surface amplitude gives the non-equilibrium round-trip amplification that a dual-wavelength solution with the given frequencies would experience from the gain chip. The solid red line indicates the two intersections of a constant loss and the background round-trip amplification, shown as an inset. Single frequency operation (ω1 = ω2) is indicated with a dashed black line.
Fig. 4
Fig. 4 An example simulation with stable dual-wavelength operation using the fully microscopic theory. (a) The resulting stable output spectra is shown, in blue, with the cavity frequency filtering in red. (b) The inversion in the QWs during stable operation. (c) Change in carrier inversion relative to t = t0 = 9 ns. (d) The relative intensity of the two largest spectral peaks. (e) Momentum resolved instantaneously replenished electron occupation probabilities from pumping, Δ t Γ scatt e. (f) Momentum resolved instantaneous change in electron occupation probabilities from the sum of carrier-carrier and carrier-phonon scattering, Δ t d d t n k e | cc + cp, where Δt = 0.1 fs.
Fig. 5
Fig. 5 Example simulation using a longer external air cavity (3.3 mm) with a glass etalon. (a) The resulting stable output spectra (blue) with the cavity transmission (red). (b) The relative intensity of the two largest spectral peaks (red/blue), dashed circles indicates where a nearby mode overtakes the current dominant mode. (c) The dynamics of the integrated spectral intensity near −19.4 meV and −10.9 meV in (a). (d)–(f) Snapshots of the resulting spectrum at times 250 ns, 336 ns, and 418 ns. The red/blue circles indicate the two dominant modes, as seen in (b), and the locations of the snapshots are indicated by thick vertical grey lines in (b).
Fig. 6
Fig. 6 Example simulations of dual-wavelength operation using a longer external air cavity (3.3 mm) with an intracavity frequency filter. (a) The spectral shape of the filter is shown as red line and the resulting stable output spectrum is presented as the blue curve. (b) The relative intensity of the two largest spectral peaks is shown as function of time after initialization.
Fig. 7
Fig. 7 An overview of dual-wavelength solutions computed from initial conditions in Fig. 3. The black dashed line is an outline of the lower part of Fig. 3. Colored circles indicate stable dual-wavelength operation and black triangles indicate simulations that converge to single-wavelength operation. The color of the circles indicates the difference in relative spectral intensity between the two stable modes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ 2 z 2 n ( z ) 2 c 0 2 2 t 2 ] E ( z , t ) = μ 0 2 t 2 P ( z , t ) .
d d t p λ , ν , k = i λ 1 , ν 1 ( e λ , λ 1 , k e δ ν , ν 1 + e ν , ν 1 , k h δ λ , λ 1 ) ρ λ 1 , ν 1 , k + Γ λ , ν , deph i ( n λ , k e + n ν , k h 1 ) Ω λ , ν , k + Γ λ ( ν ) , spont p , d d t n λ ( ν ) , k e ( h ) = 2 Im ( Ω λ , ν , k ( p λ , ν , k ) * ) + Γ λ ( ν ) , scatt e ( h ) + Γ λ ( ν ) , spont e ( h ) + d d t n λ ( ν ) , k e ( h ) | cc + cp .
e λ , λ 1 , k e = k e , λ δ λ , λ 1 λ 2 , q V | k q | λ , λ 2 , λ 1 , λ 2 n ν 2 , q e , e λ , λ 1 , k h = k h , λ δ λ , λ 1 ν 2 , q V | k q | ν , ν 2 , ν 1 , ν 2 n ν 2 , q h ,
Ω λ , ν , k = d k λ , ν E ( z , t ) + λ 1 , ν 1 , q k V | k q | λ , ν 1 , ν , λ 1 p λ 1 , ν 1 , q .
d d t n λ , k e | cc = λ 1 , λ 2 , λ 3 q , k V ^ | q | λ , λ 1 , λ 2 , λ 3 ( V ^ | q | λ , λ 1 , λ 2 , λ 3 V ^ | k k | λ , λ 1 , λ 2 , λ 3 ) 𝒟 ( k e , λ + k q e , λ 1 k e , λ 2 k q e , λ 3 ) ( ( 1 n λ 2 , k e ) ( 1 n λ 3 , k q e ) n λ , k e n λ 1 , k q e ( 1 n λ , k e ) ( 1 n λ 1 , k q e ) n λ 2 , k e n λ 3 , k q e ) + λ 1 , ν 1 , ν 2 q , k | V ^ | q | λ , ν 1 , ν 2 , λ 1 | 2 𝒟 ( k q e , λ 1 + k e , λ k + q h , ν 1 k h , ν 2 ) ( ( 1 n λ 1 , k q e ) ( 1 n ν 1 , k + q h ) n λ , k e n ν 2 , k h ( 1 n λ , k e ) ( 1 n ν 2 , k h ) n λ 1 , k q e n ν 1 , k + q h ) .
d d t n λ , k e | cp = λ 1 , q | g q λ λ 1 | 2 { 𝒟 ( k e , λ k + q e , λ 1 + ω q ) ( s q n k e , λ ( 1 n k + q e , λ 1 ) ( 1 + s q ) n k + q e , λ 1 ( 1 n k e , λ ) ) 𝒟 ( λ 1 , k q e λ , k e + ω q ) ( s q n λ 1 , k q e ( 1 n λ , k e ) ( 1 + s q ) n λ , k e ( 1 n λ 1 , k q e ) ) } ,

Metrics