Abstract

Dielectric metasurfaces based on amorphous silicon (a-Si) nanodisks are interesting for nanophotonic applications due to the high refractive index and mature/low temperature fabrication of a-Si. The investigated metasurfaces consist of a-Si nanodisk arrays embedded in a transparent film. The diameter-dependent optical properties of the nanodisk Mie resonators have been investigated by finite-difference time-domain (FDTD) simulations and spectrally-resolved reflectivity and transmission measurements. Well-ordered substrate-free a-Si nanodisk arrays were fabricated and characterized with regard to their broadband anti-reflection properties when placed on a crystalline silicon (c-Si) surface, and reflectivity/ transmission properties when embedded in a polydimethylsiloxane (PDMS) film. Our results confirm broadband anti-reflection when placed on silicon, while the optical characteristics of the nanodisks embedded in PDMS are shown to be potentially useful for color/NIR filter applications as well as for coloring on the micro/nanoscale.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays

D. Visser, B. Dev Choudhury, I. Krasovska, and S. Anand
Opt. Express 25(11) 12171-12181 (2017)

Surface relief structures for a flexible broadband terahertz absorber

Dong-Hyun Kim, Dae-Seon Kim, Sehyun Hwang, and Jae-Hyung Jang
Opt. Express 20(15) 16815-16822 (2012)

Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]

Viktoriia E. Babicheva, Mihail I. Petrov, Kseniia V. Baryshnikova, and Pavel A. Belov
J. Opt. Soc. Am. B 34(7) D18-D28 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
    [Crossref] [PubMed]
  2. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
    [PubMed]
  3. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref] [PubMed]
  4. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  5. Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
    [Crossref]
  6. V.-C. Su, C. H. Chu, G. Sun, and D. P. Tsai, “Advances in optical metasurfaces: fabrication and applications [Invited],” Opt. Express 26(10), 13148–13182 (2018).
    [Crossref] [PubMed]
  7. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19(25), 25729–25740 (2011).
    [Crossref] [PubMed]
  8. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  9. P. Spinelli and A. Polman, “Light trapping in thin crystalline Si solar cells using surface Mie scatterers,” IEEE J. Photovolt. 4(2), 554–559 (2014).
    [Crossref]
  10. S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
    [Crossref] [PubMed]
  11. M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
    [Crossref] [PubMed]
  12. S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).
  13. J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
    [Crossref] [PubMed]
  14. Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
    [Crossref]
  15. V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
    [Crossref]
  16. H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
    [Crossref]
  17. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref] [PubMed]
  18. C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
    [Crossref] [PubMed]
  19. H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
    [PubMed]
  20. S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
    [Crossref] [PubMed]
  21. H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
    [Crossref]
  22. A. Adibi, The Mie Theory (Springer Berlin Heidelberg, 2012).
  23. D. Maystre, Theory of Wood’s Anomalies (Springer, 2012).
  24. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).
  25. F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21(23), 27587–27601 (2013).
    [Crossref] [PubMed]
  26. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
    [Crossref] [PubMed]
  27. C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
    [Crossref]
  28. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
    [PubMed]
  29. D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [Crossref] [PubMed]
  32. J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
    [Crossref] [PubMed]

2018 (1)

2017 (6)

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
[Crossref]

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

2016 (2)

2015 (4)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

2014 (6)

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Spinelli and A. Polman, “Light trapping in thin crystalline Si solar cells using surface Mie scatterers,” IEEE J. Photovolt. 4(2), 554–559 (2014).
[Crossref]

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

2013 (5)

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21(23), 27587–27601 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[PubMed]

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

2012 (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
[PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
[Crossref]

2011 (1)

2010 (1)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

2009 (1)

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Anand, S.

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Bedu, F.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

Beermann, J.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Bezares, F. J.

Bhat, N.

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

Bonod, N.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[Crossref] [PubMed]

Caldwell, J. D.

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Carlson, A.

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Cheng, W.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Chichkov, B. N.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Choi, D.-Y.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Chu, C. H.

Crozier, K. B.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Dai, Q.

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dev, A.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Eich, M.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Eriksen, R. L.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Fan, R. H.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Fang, H.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Fenollosa, R.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Fischer, W.-J.

S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Gallas, B.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

Gao, S.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Glembocki, O. J.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Grierson, D. S.

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

Grote, R. R.

Guo, J.

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Huang, Z.

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

Jia, Z. Y.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Jiang, R.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Kasica, R.

Kim, E.-S.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Kim-Lee, H.-J.

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Krauss, T. F.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Kuznetsov, A. I.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Lan, S.

Lee, S.-S.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Li, H.

Li, J.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

Li, K.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Lin, H.-Q.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Liu, J.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Long, J. P.

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Luxembourg, S. L.

V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
[Crossref]

Mann, S. A.

Marsal, L. F.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Meseguer, F.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Naureen, S.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Neder, V.

V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
[Crossref]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Osgood, R. M.

Owrutsky, J. C.

Ozerov, I.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Park, C.-S.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Park, H.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[PubMed]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
[Crossref]

Peng, R. W.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Petrov, A.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Polman, A.

V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
[Crossref]

P. Spinelli and A. Polman, “Light trapping in thin crystalline Si solar cells using surface Mie scatterers,” IEEE J. Photovolt. 4(2), 554–559 (2014).
[Crossref]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
[PubMed]

Prajapati, C. S.

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

Prorok, S.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

Proust, J.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

Reardon, C. P.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Rendell, R. W.

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Richter, K.

S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).

Rogers, J. A.

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Schuller, J. A.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Seo, K.

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
[Crossref]

Shahid, N.

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Shen, W.

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

Shi, L.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

Shirey, L.

Shrestha, V. R.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli and A. Polman, “Light trapping in thin crystalline Si solar cells using surface Mie scatterers,” IEEE J. Photovolt. 4(2), 554–559 (2014).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
[PubMed]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Stellinga, D.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Su, R.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Su, V.-C.

Sun, G.

Tie, S.

Tsai, D. P.

Turner, K. T.

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

van de Groep, J.

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
[PubMed]

Visser, D.

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Wang, C.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, J.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Wang, S.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, X.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Xiang, J.

Xie, Y.-M.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Xiong, X.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Yang, J. K. W.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Yang, S.-C.

S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).

Yang, Z.-L.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Yao, B.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Ye, Z.

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Yue, W.

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

Zeng, Y.

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

Zhang, C.

Zhang, K.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zhong, S.

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

Zhou, L.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Zhou, Y.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Zhuo, X.

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10(8), 7761–7767 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Appl. Phys. Lett. (3)

V. Neder, S. L. Luxembourg, and A. Polman, “Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers,” Appl. Phys. Lett. 111, 073902 (2017).
[Crossref]

H. Park, K. Seo, and K. B. Crozier, “Adding colors to polydimethylsiloxane by embedding vertical silicon nanowires,” Appl. Phys. Lett. 101, 193107 (2012).
[Crossref]

S.-C. Yang, K. Richter, and W.-J. Fischer, “Multicolor generation using silicon nanodisk absorber,” Appl. Phys. Lett. 106, 081112 (2015).

ECS J. Solid State Sci. Technol. (1)

D. Visser, Z. Ye, C. S. Prajapati, N. Bhat, and S. Anand, “Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection,” ECS J. Solid State Sci. Technol. 6(9), 653–659 (2017).
[Crossref]

IEEE J. Photovolt. (1)

P. Spinelli and A. Polman, “Light trapping in thin crystalline Si solar cells using surface Mie scatterers,” IEEE J. Photovolt. 4(2), 554–559 (2014).
[Crossref]

J. Appl. Phys. (2)

H.-J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, “Interface mechanics of adhesiveless microtransfer printing processes,” J. Appl. Phys. 115, 143513 (2014).
[Crossref]

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115, 244312 (2014).
[Crossref]

Nano Lett. (1)

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

S. Naureen, N. Shahid, A. Dev, and S. Anand, “Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si,” Nanotechnology 24(22), 225301 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5, 3440 (2014).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(692), 692 (2012).
[PubMed]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rep. (1)

Z.-L. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(045401), 1–12 (2010).

Sci. Rep. (5)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[PubMed]

S. Zhong, Y. Zeng, Z. Huang, and W. Shen, “Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics,” Sci. Rep. 5, 8915 (2015).
[Crossref] [PubMed]

C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks,” Sci. Rep. 7(1), 2556 (2017).
[Crossref] [PubMed]

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[PubMed]

Other (3)

A. Adibi, The Mie Theory (Springer Berlin Heidelberg, 2012).

D. Maystre, Theory of Wood’s Anomalies (Springer, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematics of the fabrication process. (a) Colloidal lithography resulting in a close-packed hexagonal array of SiO2 colloidal particles (diameter: ~500 nm). (b) Fabrication of the etch mask by reactive ion etching (RIE) based on a CHF3/Ar chemistry. (c) Inductively coupled plasma reactive-ion etching (ICP-RIE) of the a-Si nanodisk array by a SF6/C4F8/Ar-based chemistry. (d) Fabrication of the substrate-free nanodisk array by the removal of the SiO2 etch mask and sacrificial SiO2 layer. (e) Substrate-free a-Si nanodisk array before PDMS embedding. (f) Embedding of a-Si nanodisk array in PDMS. (g) Lift-off of embedded a-Si nanodisk array structures by peeling-off the PDMS from the c-Si surface.
Fig. 2
Fig. 2 Scanning electron microscopy (SEM) images of the fabrication process steps. (a) Colloidal lithography resulting in a close-packed hexagonal array of SiO2 colloidal particles (diameter: ~500 nm). (b) Fabrication of the etch mask by reactive ion etching (RIE) based on a CHF3/Ar chemistry. (c) Inductively coupled plasma reactive-ion etching (ICP-RIE) of the a-Si nanodisk array by a SF6/C4F8/Ar-based chemistry. (d) Top-view of a substrate-free a-Si nanodisk array on the c-Si surface. (e) Side-view of substrate-free a-Si nanodisk array structures. (f) Top-view of embedded a-Si nanodisk structures in PDMS.
Fig. 3
Fig. 3 Transmission data for a-Si nanodisk arrays embedded in PDMS with a hexagonal array period of 500 nm, height of 200 nm and varying nanodisk diameter. (a) Contour plot showing the total transmittance obtained by FDTD simulations for nanodisk diameters varying between 150 and 400 nm. The shifts of the transmittance peaks (T1-4) and dips (Tdip1(a&b)-Tdip2(a&b)) are indicated with a white dashed line and labelled accordingly. (b) Shows the graph for data taken from (a) for a nanodisk diameter of 300 nm (black line in (a)). In the graph the relevant peaks and dips are labelled accordingly. (c) Data taken from (a) showing the redshift of the relevant transmittance peak (T1 or T1&T2) for nanodisk diameters increasing from 200 to 350 nm. (d) The measured specular transmittance data for the fabricated structures with nanodisk diameters increasing from ~300 to ~380 nm. The relevant peaks and dips are labelled accordingly and the redshift of the transmittance peak (T1&T2) is indicated for an increasing nanodisk diameter.
Fig. 4
Fig. 4 Optical filter application for metasurfaces based on a-Si nanodisk arrays embedded in a transparent medium (e.g., PDMS). (a) Schematic of the nanodisk-based metasurface for optical filter applications for both in reflectance and transmittance mode. (b) FDTD simulation data showing the reflectivity, transmission and absorption spectra for a-Si nanodisk arrays embedded in PDMS with a hexagonal array period of 500 nm, height of 200 nm and diameter of 300 nm. The relevant peaks are labelled accordingly. (c) The determined shifts of the relevant reflectance, transmittance and absorption peaks for nanodisk diameters increasing from 150 to 400 nm; obtained from the FDTD simulation data. (d) The relevant reflectance and transmittance peaks interesting for optical filter applications (data taken from (b)). Both peaks can be tuned in the (visible-)NIR wavelength region by varying/optimizing the a-Si nanodisk diameter.
Fig. 5
Fig. 5 Influence of the additional hard mask layer, below the hexagonal array of the size reduced SiO2 spheres, on the shape of the etched structures by inductively coupled plasma reactive-ion etching (ICP-RIE). (a) Schematic showing the influence of the etched structures without the additional hard mask layer. (b) Schematic showing the etched a-Si nanodisk structures due to the additional hard mask layer. (c) Scanning electron microscopy (SEM) images showing the influence on the etched structures when the additional hard mask layer is absent (from left to right: 1 to 4 minutes ICP-RIE time with a time-step of 1 minute); the scale bar is shown in red.
Fig. 6
Fig. 6 Reflectivity data for a-Si nanodisk arrays on a c-Si surface with a hexagonal array period of 500 nm, height of 200 nm and varying nanodisk diameter. (a) Schematic of the nanodisk-based metasurface for (omnidirectional) broadband anti-reflection applications. (b) The measured specular reflectivity data for the fabricated structures with nanodisk diameters increasing from ~180 to ~270 nm. The relevant dips are labelled accordingly for the data shown for the nanodisk diameter of 220 nm. A redshift of the reflectance dips (Si-Rdip2 and Si-Rdip3) is observed for an increasing nanodisk diameter. (c) Contour plot (diameter step of 5 nm) showing the total reflectance obtained by FDTD simulations for nanodisk diameters varying between 150 and 400 nm. The shifts of the reflectance dips (Si-Rdip1-3) and location of the periodicity dip are indicated with a white dashed line and labelled accordingly. Optical constants for a-Si and c-Si have been taken from Palik [30]. (d) Data taken from (c) showing the redshift of the relevant reflectance dips (Si-Rdip2 and Si-Rdip3) for nanodisk diameters increasing from 200 to 300 nm. The relevant dips are labelled accordingly for the data shown related to a nanodisk diameter of 300 nm.
Fig. 7
Fig. 7 FDTD simulations regarding the influence of the inter-disk spacing on the reflectivity and transmission spectra for a-Si nanodisk arrays with a nanodisk height of 200 nm, diameter of 300 nm and varying hexagonal array period (inter-disk spacing). Optical constants for a-Si and c-Si have been taken from Palik [30]. Optical constants for PDMS were taken from the Dow Corning product information. (a) Contour plot of the reflectivity data with regard to the hexagonal array period (inter-disk spacing = period-diameter; step size of 50 nm) for a-Si nanodisk arrays on a c-Si surface. The shifts of the reflectivity dips (Si-Rdip1-3) and the periodicity dip are indicated with white dashed lines and labelled accordingly. (b) Data taken from (a) showing the redshift of the reflectivity dips for an increasing inter-disk spacing where the reflectivity dips are labelled accordingly. (c) Contour plot of the transmission data with regard to the hexagonal array period (inter-disk spacing = period-diameter; step size of 50 nm) for a-Si nanodisk arrays embedded in PDMS. The shifts of the transmission peak (T1), dips (Tdip1b and Tdip2) and the periodicity dip are indicated with white dashed lines and labelled accordingly. (d) Data taken from (c) showing the redshift of the transmittance peak (T1) for increasing inter-disk spacing where the transmission peak is labelled accordingly.
Fig. 8
Fig. 8 Cross-section plots of the E- and H-field profiles for the wavelengths associated to the absorption peaks A1-4 for a-Si nanodisk arrays embedded in PDMS; with a hexagonal array period of 500 nm, height of 200 nm and diameter of 300 nm. The cross-sections are taken along the Z-axis of the unit cell and through the middle of the nanodisk. The field profiles are shown for both the X- and Y-field monitors, respectively, where the X- and Y-axis span the horizontal plane of the simulated unit cell. The plots are obtained for a 0° (Ex) polarized source at a normal (vertical) incidence angle. It should be noted that the plots show the sum of the incident and scattered field components.
Fig. 9
Fig. 9 Reflectivity data for a-Si nanodisk arrays embedded in PDMS with a hexagonal array period of 500 nm, height of 200 nm and varying nanodisk diameter. Optical constants for a-Si have been taken from Palik [30]. Optical constants for PDMS were taken from the Dow Corning product information. (a) Contour plot showing the total reflectivity data obtained by FDTD simulations for nanodisk diameters varying between 150 and 450 nm. The shifts of the reflectivity peaks (R1-4) are indicated with a white dashed line and labelled accordingly. (b) Data taken from (a) showing the redshift of the relevant reflectance peak (R1 or R1&R2) for nanodisk diameters increasing from 200 to 400 nm.

Tables (2)

Tables Icon

Table 1 Measured data for the transmittance peaks/dips for a-Si nanodisks in PDMS

Tables Icon

Table 2 Simulation data for the transmittance peaks/dips for a-Si nanodisks in PDMS

Metrics