Abstract

In a recently published report, an ultra-broadband gradient-metasurface-based absorber (GMBA) with a single layer of metasurface is proposed by Guo et al [Opt. Express 24(18), 20586 (2016)] to realize the ultra-broadband perfect absorption. Moreover, the bandwidth of absorption can be broadened by increasing a layer metasurface on the basis of single-layered GMBA. This comment demonstrates that the cross-polarization reflection is neglected by the authors, when they calculate the total absorption in the proposed GMBAs. It is found that there are only two absorption peaks at 8.09 μm and 9.84 μm with real absorption rates of 58.4% and 57.1% in a single-layered GMBA.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
    [Crossref] [PubMed]
  3. S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
    [Crossref]
  4. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  5. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  6. H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
    [Crossref]
  7. R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
    [Crossref]

2017 (4)

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

2016 (2)

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Chen, X. L.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Gu, C. Q.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Guo, W.

Han, T.

Hong, Z.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Huang, C.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Jing, X. F.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Kim, S. J.

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

Kim, Y. J.

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, Y. P.

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, L. L.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, Y.

Luo, X.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Martin, F.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pu, M.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, J.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Sun, H. Y.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Tian, Y.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Wang, W. M.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Wu, X.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Xia, R.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yoo, Y. J.

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhao, Z.

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

Zhou, L.

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Zhu, H. H.

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

J. Appl. Phys. (1)

H. Y. Sun, C. Q. Gu, X. L. Chen, L. Zhou, L. L. Liu, and F. Martin, “Ultra-Wideband and Broad-Angle Linear Polarization Conversion Metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Opt. Commun. (2)

R. Xia, X. F. Jing, H. H. Zhu, W. M. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

S. J. Kim, Y. J. Yoo, Y. J. Kim, and Y. P. Lee, “Triple-band metamaterial absorption utilizing single rectangular hole,” Opt. Commun. 382, 151–156 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (2)

C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, and X. Luo, “Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance,” Sci. Rep. 7(1), 5652 (2017).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the single-layered GMBA, the dimensions are P = 6.76 μm, t = 0.69 μm, W1 = 1.91 μm, L1 = 0.8 μm, W2 = 1.94 μm, L2 = 0.85 μm, W3 = 2.3 μm, L3 = 1.2 μm, W4 = 2.76 μm, and L4 = 1.21 μm. (b) TE polarization. (c) TM polarization.
Fig. 2
Fig. 2 The simulated results: (a) Simulated reflection spectra, | S TETE (ω) | 2 is co-polarization reflection and | S TMTE (ω) | 2 is cross-polarization reflection. (b) The proposed absorption spectrum in [5] and the actual absorption spectrum for TE polarization (single-layered GMBA). (c) Simulated reflection spectra, | S TMTM (ω) | 2 is co-polarization reflection and | S TETM (ω) | 2 is cross-polarization reflection. (d) The proposed absorption spectrum in [5] and the actual absorption spectrum for TM polarization (single-layered GMBA). (e) The actual absorption spectrum for TE and TM polarization (single-layered GMBA).
Fig. 3
Fig. 3 The distributions of surface current at different frequencies: (a) and (b) The distributions of surface currents on the upper and bottom layers at 11.43 μm. (c) and (d) The distributions of surface currents on the upper and bottom layers at 7.94 μm.
Fig. 4
Fig. 4 (a) Schematic of the dual-layered GMBA, the dimensions are Q = 9.2 μm, t1 = 0.67 μm, t2 = 0.59 μm, W1 = 1.76 μm, W2 = 2.21 μm, W3 = 2.68 μm, W4 = 3.12 μm, Li1 and Li2 (i = 1, 2, 3, 4), L11 = 0.82 μm, L21 = 0.87 μm, L31 = 1.16 μm, L41 = 1.22 μm, L12 = 0.60 μm, L22 = 1.02 μm, L32 = 1.47 μm, and L42 = 1.30 μm. (b) The proposed absorption spectrum in [5] and the actual absorption spectrum for TE polarization (dual-layered GMBA). (c) The proposed absorption spectrum in [5] and the actual absorption spectrum for TM polarization (dual-layered GMBA).
Fig. 5
Fig. 5 The simulated results: (a) Simulated reflection spectra for different values of parameter Li, | S TMTE (ω) | 2 is cross-polarization reflection. (b) The actual absorption spectrum for different values of parameter Li for TE polarization (single-layered GMBA). (c) Simulated reflection spectra for different values of parameter Li, | S TETM (ω) | 2 is cross-polarization reflection. (d) The actual absorption spectrum for different values of parameter Li for TM polarization (single-layered GMBA).

Metrics