Abstract

We theoretically and experimentally investigate the wide-angle perfect absorptance in a photonic heterostructure composed of a metal film and a truncated photonic crystal (PC) with layered hyperbolic metamaterials (HMMs) in the near ultraviolet and visible regions. The wide-angle perfect optical absorption depends on the dispersionless Tamm plasmon polarition (TPP) under TM polarization, which originates from reflection phase compensation condition between the metal and the truncated PC with HMMs. Our experimental results show nearly perfect absorptance over 0.91 in an angle range of 0-45 degree, which facilitates the design of perfect optical absorbers working in a wide angle range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterostructure-based optical absorbers

Gui-qiang Du, Hai-tao Jiang, Zhan-shan Wang, Ya-ping Yang, Zi-li Wang, Hai-qing Lin, and Hong Chen
J. Opt. Soc. Am. B 27(9) 1757-1762 (2010)

Wide-angle absorber achieved by optical black holes using graded index photonic crystals

Hung-Wen Wang and Lien-Wen Chen
J. Opt. Soc. Am. B 29(8) 2222-2228 (2012)

Tunable multichannel nonreciprocal perfect absorber based on resonant absorption

Jun Zhou, Li Jin, and Edwin Yue-Bun Pun
Opt. Lett. 37(13) 2613-2615 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
  2. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  3. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
    [Crossref]
  4. P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).
  5. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref] [PubMed]
  6. Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  7. Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
    [Crossref]
  8. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref] [PubMed]
  9. K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
    [Crossref] [PubMed]
  10. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536 (2017).
    [Crossref]
  11. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
    [Crossref] [PubMed]
  12. X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
    [Crossref] [PubMed]
  13. F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
    [Crossref]
  14. A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
    [Crossref] [PubMed]
  15. L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
    [Crossref] [PubMed]
  16. P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
    [Crossref] [PubMed]
  17. T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [Crossref]
  18. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  19. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [Crossref] [PubMed]
  20. J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
    [Crossref] [PubMed]
  21. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
  22. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  23. X. Niu, D. Qi, X. Wang, Y. Cheng, F. Chen, B. Li, and R. Gong, “Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures,” J. Opt. Soc. Am. A 35(11), 1832–1838 (2018).
    [Crossref] [PubMed]
  24. G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
    [Crossref]
  25. M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3553 (2013).
    [Crossref] [PubMed]
  26. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  27. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  28. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  29. E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
    [Crossref]
  30. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
    [Crossref] [PubMed]
  31. J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  32. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  33. Z. Saleki, S. R. Entezar, and A. Madani, “Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer,” Appl. Opt. 56(2), 317–323 (2017).
    [Crossref] [PubMed]
  34. S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
    [Crossref]
  35. C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
    [Crossref]
  36. F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
    [Crossref]
  37. C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
    [Crossref] [PubMed]
  38. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  39. B. Liu, G. Lu, L. Cui, J. Li, F. Sun, F. Liu, Y. Li, T. Yang, and G. Du, “Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films,” Opt. Express 25(12), 13271–13277 (2017).
    [Crossref] [PubMed]
  40. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  41. V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23(8), 9681–9689 (2015).
    [Crossref] [PubMed]

2019 (2)

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

2018 (7)

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
[Crossref] [PubMed]

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

X. Niu, D. Qi, X. Wang, Y. Cheng, F. Chen, B. Li, and R. Gong, “Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures,” J. Opt. Soc. Am. A 35(11), 1832–1838 (2018).
[Crossref] [PubMed]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

2017 (4)

2016 (3)

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

2015 (3)

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23(8), 9681–9689 (2015).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

2014 (7)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
[Crossref] [PubMed]

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

2013 (3)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3553 (2013).
[Crossref] [PubMed]

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

2008 (3)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Abdelsalam, M.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Babicheva, V. E.

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23(8), 9681–9689 (2015).
[Crossref] [PubMed]

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Barber, G. D.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Baumberg, J. J.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Besteiro, L. V.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Boltasseva, A.

Borisov, A. G.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chen, C.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Chen, F.

Chen, H.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

Chen, J.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Chen, S.

Chen, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Chen, Y.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Cheng, H.

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Cheng, Y.

Cui, L.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

D’Orazio, A.

Dai, X.

de Abajo, F. J. G.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

de Ceglia, D.

Ding, F.

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Ding, Y.

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Dong, J.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Du, G.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

B. Liu, G. Lu, L. Cui, J. Li, F. Sun, F. Liu, Y. Li, T. Yang, and G. Du, “Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films,” Opt. Express 25(12), 13271–13277 (2017).
[Crossref] [PubMed]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

Elson, J. M.

Entezar, S. R.

Erten, S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Fan, Y.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Faryad, M.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Fu, L.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Fu, Q.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, X.

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Gong, R.

Govorov, A. O.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

Grande, M.

Guo, J.

Guo, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Guo, Z.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Hall, A. S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Halterman, K.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Q.

He, S.

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Hu, J.

Huang, T. J.

Huang, Y.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Ishii, S.

Jacob, Z.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Jagadish, C.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Jia, B.

Jiang, H.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

Jiang, H. T.

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Jiang, X.

Jiang, Y.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Khoo, I. C.

Kildishev, A. V.

Kiraly, B.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kretzschmar, I.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Lakhtakia, A.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Lavrinenko, A. V.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, B.

Li, H.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Li, J.

Li, Q.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Li, Y.

B. Liu, G. Lu, L. Cui, J. Li, F. Sun, F. Liu, Y. Li, T. Yang, and G. Du, “Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films,” Opt. Express 25(12), 13271–13277 (2017).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Li, Y. H.

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Li, Z.

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Liang, Y.

Lin, H.

Liu, B.

Liu, F.

Liu, L.

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

Lu, G.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

B. Liu, G. Lu, L. Cui, J. Li, F. Sun, F. Liu, Y. Li, T. Yang, and G. Du, “Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films,” Opt. Express 25(12), 13271–13277 (2017).
[Crossref] [PubMed]

Lu, H.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Madani, A.

Mallouk, T. E.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Mao, D.

Mayer, T. S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Menon, V. M.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Mo, L.

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

Narimanov, E.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

Niu, X.

Orlov, A. A.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Peng, H.

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Pu, Y.

Qi, D.

Qin, M.

Qiu, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ren, R.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

Saleki, Z.

Scalora, M.

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shalaginov, M. Y.

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Shen, N.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Shi, P.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Sipe, J. E.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Sugawara, Y.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Sun, F.

Tan, H. H.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Teperik, T. V.

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Vincenti, M. A.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

Wang, X.

Wang, Y.

Wang, Z.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

G. Du, H. Jiang, Z. Wang, Y. Yang, Z. Wang, H. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010).
[Crossref]

Wei, Z.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Wiederrecht, G. P.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wu, F.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Wu, H.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Wu, J.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

Wu, L.

Xiang, Y.

Xiao, S.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Xu, J.

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Xue, C.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Xue, C. H.

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Yan, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Yang, T.

Yang, Y.

Ye, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Yi, J.

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Yi, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Yi, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Ying, X.

You, Q.

Yu, P.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

Zeng, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Zhai, X.

Zhang, B.

Zhang, F.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhang, P.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Zhang, Y.

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

Zhang, Y. W.

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Zhao, D.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Zhao, J.

Zhao, Q.

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhao, Y.

Zheng, M.

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

ACS Nano (1)

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurface: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Adv. Opt. Mater. (2)

Y. Fan, N. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3),1800537 (2019).
[Crossref]

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater. 7(3), 1800995 (2019).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, and H. Chen, “Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths,” Appl. Phys. Lett. 112(4), 041902 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. Ding, J. Yi, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nanomaterials (1)

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8(3), 175 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Opt. Express (7)

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

L. Liu, H. Peng, Y. Pu, X. Ying, Z. Li, J. Xu, Y. Jiang, and Z. Liu, “Wide-angle broadband absorption in tapered patch antennas,” Opt. Express 26(2), 1064–1071 (2018).
[Crossref] [PubMed]

P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, and Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption,” Opt. Express 26(16), 20471–20480 (2018).
[Crossref] [PubMed]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
[Crossref] [PubMed]

B. Liu, G. Lu, L. Cui, J. Li, F. Sun, F. Liu, Y. Li, T. Yang, and G. Du, “Experimental investigation of multiple near-perfect absorptions in sandwich structures containing thin metallic films,” Opt. Express 25(12), 13271–13277 (2017).
[Crossref] [PubMed]

V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding,” Opt. Express 23(8), 9681–9689 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. A (1)

S. V. Zhukovsky, A. A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. E. Sipe, “Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Phys. Rev. B (2)

C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, and H. Chen, “Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials,” Phys. Rev. B 93(12), 125310 (2016).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).

Phys. Rev. X (1)

E. E. Narimanov, “Photonic hypercrystals,” Phys. Rev. X 4(4), 041014 (2014).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (1)

C. H. Xue, F. Wu, H. T. Jiang, Y. H. Li, Y. W. Zhang, and H. Chen, “Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons,” Sci. Rep. 6(1), 39418 (2016).
[Crossref] [PubMed]

Science (1)

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the heterostructure M(AB)15. (b) Simulated absorption spectra of M(AB)15 versus incident angle for TM waves.
Fig. 2
Fig. 2 (a) Effective permittivity tensor of hyperbolic metamaterials (CD)I as a function of wavelength. (b) Simulated reflection spectra of [(CD)2B]3 versus all incident angles for TM waves.
Fig. 3
Fig. 3 (a) Schematic of the heterostructure M[(CD)2B]3. (b) Simulated absorption spectra of M[(CD)2B]3 at seven different incident angles for TM waves.
Fig. 4
Fig. 4 (a) Relationship between the simulated absorptance of M[(CD)2B]3 and the incident angle for TM waves at λ=378nm. (b) Reflection phases of metal layer M ( ϕ M ) and PC [(CD)2B]3 ( ϕ PC ) and the sum of them ( ϕ M + ϕ PC ) as a function of incident angle at λ=378nm.
Fig. 5
Fig. 5 SEM image (cross-section) of the sample M[(CD)2B]3S.
Fig. 6
Fig. 6 Measured absorption and transmission spectra of the sample M[(CD)2B]3S at different incident angles for TM waves, where the incident angle is from (a) 7.5 o to 45 o and (b) 50 o to 80 o .
Fig. 7
Fig. 7 Comparison between simulated results (background color), simulated gap-edges (dashed lines) and measured absorption peaks (scattered circles) of the sample for TM waves.
Fig. 8
Fig. 8 Simulated reflection spectra (for TM waves) of the structure (CD)I with different periodic numbers I = 2, 4, 8 and the homogeneous HMM layer (EMT) at the incident angles (a) 0 o , (b) 30 o , (c) 60 o and (d) 75 o .
Fig. 9
Fig. 9 Simulated transmission spectra (for TM waves) of the structure (CD)I with different periodic numbers I = 2, 4, 8 and the homogeneous HMM layer (EMT) at the incident angles (a) 0 o , (b) 30 o , (c) 60 o and (d) 75 o .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ M + ϕ PC =2mπ,
ϕ M + ϕ PC =0
ε M =1 f 0 ω P 2 ω 2 +i γ 0 ω f 1 ω P 2 ω 2 ω 1 2 +i γ 1 ω
ε Ax =f ε C +(1f) ε D ,
1 ε Az =f 1 ε C +(1f) 1 ε D ,

Metrics