Abstract

Optical switches based on dielectric nanostructures are highly desired at present. To enhance the wavelength-selective light absorption, and achieve an absorption-induced switching effect, here we propose a graphene-based metamaterial absorber that consists of a dielectric grating, a graphene monolayer, and a photonic crystal. Numerical results reveal that the dual-band absorption with an ultranarrow spectrum of the system is enhanced greatly due to the critical coupling, which is enabled by the combined effects of guided mode resonances and photonic band gap. The quality factor of the absorber can achieve a high value (>500), which is basically consistent with the coupled mode theory. Slow light emerges within the absorption window. In addition, electrostatic gating of graphene in the proposed structure provides dynamic control of the absorption due to the change of the chemical potential of the graphene, resulting in an optional multichannel switching effect. Unlike other one-dimensional devices, these effects can be applied to another polarization without changing the structure parameters, and the quality factor is significantly enhanced (>1000). The tunable light absorption offered by the simple structure with an all-dielectric configuration will provide potential applications for graphene-based optoelectronic devices in the near-infrared range, such as narrowband selective filters, detectors, optical switches, modulators, slow optical devices, etc.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies

Jigang Hu, Yeming Qing, Shuying Yang, Yongze Ren, Xiaohang Wu, Weiqing Gao, and Chunyan Wu
J. Opt. Soc. Am. B 34(4) 861-868 (2017)

Tuning infrared guided-mode resonances with graphene

Domenico de Ceglia, Maria A. Vincenti, Marco Grande, Giuseppe V. Bianco, Giovanni Bruno, Antonella D’Orazio, and Michael Scalora
J. Opt. Soc. Am. B 33(3) 426-433 (2016)

Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio
Opt. Express 22(25) 31511-31519 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  3. S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
    [Crossref]
  4. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  6. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  7. H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
    [Crossref]
  8. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
    [Crossref]
  9. H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
    [Crossref]
  10. G. Wang, C. Chen, Z. Zhang, G. Ma, K. Zhang, and C. W. Qiu, “Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator,” Opt. Mater. Express 9(1), 56–64 (2019).
    [Crossref]
  11. L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
    [Crossref] [PubMed]
  12. Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
    [Crossref] [PubMed]
  13. J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
    [Crossref]
  14. S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
    [Crossref]
  15. S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
    [Crossref]
  16. S. Asgari and N. Granpayeh, “Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits,” IEEE Trans. Nanotechnol. 17(3), 533–542 (2018).
    [Crossref]
  17. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  18. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  19. Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  20. W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
    [Crossref]
  21. J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
    [Crossref]
  22. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  23. T. J. Cui, “Microwave metamaterials - From passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
    [Crossref]
  24. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
    [Crossref]
  25. Y. Jiang, H. D. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
    [Crossref] [PubMed]
  26. T. J. Cui, “Microwave metamaterials,” Natl. Sci. Rev. 5(2), 134–136 (2018).
    [Crossref]
  27. J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
    [Crossref] [PubMed]
  28. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  29. S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref]
  30. J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
    [Crossref]
  31. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Akozbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
    [Crossref]
  32. Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
    [Crossref] [PubMed]
  33. Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
    [Crossref]
  34. L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
    [Crossref]
  35. C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
    [Crossref]
  36. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  37. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  38. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  40. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
    [Crossref]
  41. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  42. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  43. Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
    [Crossref]
  44. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  45. Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
    [Crossref]
  46. J. Yoon, K. H. Seol, and S. H. Song, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
    [Crossref] [PubMed]
  47. H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
    [Crossref]
  48. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  49. A. Mahigir and G. Veronis, “Nanostructure for near total light absorption in a monolayer of graphene in the visible,” J. Opt. Soc. Am. B 35(12), 3153–3158 (2018).
    [Crossref]
  50. Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
    [Crossref] [PubMed]

2019 (2)

G. Wang, C. Chen, Z. Zhang, G. Ma, K. Zhang, and C. W. Qiu, “Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator,” Opt. Mater. Express 9(1), 56–64 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

2018 (10)

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

A. Mahigir and G. Veronis, “Nanostructure for near total light absorption in a monolayer of graphene in the visible,” J. Opt. Soc. Am. B 35(12), 3153–3158 (2018).
[Crossref]

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
[Crossref]

S. Asgari and N. Granpayeh, “Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits,” IEEE Trans. Nanotechnol. 17(3), 533–542 (2018).
[Crossref]

Y. Jiang, H. D. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

T. J. Cui, “Microwave metamaterials,” Natl. Sci. Rev. 5(2), 134–136 (2018).
[Crossref]

J. Zhou, S. Yan, C. Li, J. Zhu, and Q. H. Liu, “Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure,” Opt. Express 26(14), 18155–18163 (2018).
[Crossref] [PubMed]

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

2017 (6)

T. J. Cui, “Microwave metamaterials - From passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

2016 (4)

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

2015 (1)

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

2014 (5)

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Akozbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[Crossref]

2013 (2)

H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

2012 (6)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

2011 (4)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Yoon, K. H. Seol, and S. H. Song, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

2009 (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

1993 (1)

Adam, S.

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Akozbek, N.

Alaee, R.

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Asadi, S.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Asgari, S.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
[Crossref]

S. Asgari and N. Granpayeh, “Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits,” IEEE Trans. Nanotechnol. 17(3), 533–542 (2018).
[Crossref]

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Avouris, P.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Bao, Q.

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Biabanifard, M.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Biabanifard, S.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Bian, L. A.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Bianco, G. V.

Bolotin, K. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Briggs, D. P.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Bruno, G.

Cao, W. P.

Chadha, A.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chen, C.

G. Wang, C. Chen, Z. Zhang, G. Ma, K. Zhang, and C. W. Qiu, “Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator,” Opt. Mater. Express 9(1), 56–64 (2019).
[Crossref]

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, Y.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Cheng, H. M.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Chu, H. S.

H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Cui, T. J.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

T. J. Cui, “Microwave metamaterials,” Natl. Sci. Rev. 5(2), 134–136 (2018).
[Crossref]

T. J. Cui, “Microwave metamaterials - From passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

D’Orazio, A.

Dai, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Danesh, M.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

de Ceglia, D.

De Vittorio, M.

Deng, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Duan, X. F.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref]

Fan, Y. S.

Farhat, M.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gan, S.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Gan, X.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Gao, C. N.

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Grande, M.

Granpayeh, N.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
[Crossref]

S. Asgari and N. Granpayeh, “Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits,” IEEE Trans. Nanotechnol. 17(3), 533–542 (2018).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Guo, C. C.

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Guo, J.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

How Gan, C.

H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Hu, J. H.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Huang, J. H.

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Huang, Y. Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Huang, Z. R.

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Hwang, E. H.

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Jia, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Jiang, Y.

Jing Li, X.

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kashani, Z. G.

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
[Crossref]

Klots, A.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Kravchenko, I. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Lederer, F.

Li, C.

Li, H. J.

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Li, J.

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Li, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Li, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Liang, W.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Liu, H.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Liu, J. Q.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Liu, J. T.

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, K.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, N. H.

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, P.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Liu, Q. H.

Liu, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Long, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Ma, G.

Ma, H. F.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

Ma, T.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Ma, Z.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Magnusson, R.

Mahigir, A.

Mao, D.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Menon, L.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mueller, T.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Mustapha, C. E.

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Peng, L.

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Peng, Z.

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Petruzzelli, V.

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Premaratne, M.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Qin, M.

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

Qin, S. Q.

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Qing, Y. M.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, and T. J. Cui, “Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies,” Opt. Express 26(25), 32442–32450 (2018).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Qiu, C. W.

G. Wang, C. Chen, Z. Zhang, G. Ma, K. Zhang, and C. W. Qiu, “Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator,” Opt. Mater. Express 9(1), 56–64 (2019).
[Crossref]

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Ren, W.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Ren, X. M.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Ren, Y. Z.

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

Rockstuhl, C.

Rossi, E.

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Sarma, S. D.

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Scalora, M.

Seol, K. H.

Shen, L.

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Shivananju, B. N.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Shuai, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Song, J.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Song, S. H.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Stomeo, T.

Suh, W.

Sun, B.

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Teng, J.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Valentine, J.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Veronis, G.

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Vincenti, M. A.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, G.

Wang, J.

Wang, L. L.

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Wang, Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Wang, S. S.

Wang, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Wang, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, S. C.

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Wu, F.

Wu, Q. Y. S.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Xia, F.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xiang, Y.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Xu, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

Xu, Q.

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Xu, W.

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Xue, Y.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Yan, S.

Yang, H.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yang, L.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Yang, Y.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Ye, W. M.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoon, J.

You, Q.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

Yu, S.

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Yuan, J.

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Yuan, X. D.

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhai, X.

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Zhang, C.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Zhang, H.

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Zhang, H. D.

Zhang, J. F.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Zhang, K.

G. Wang, C. Chen, Z. Zhang, G. Ma, K. Zhang, and C. W. Qiu, “Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator,” Opt. Mater. Express 9(1), 56–64 (2019).
[Crossref]

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Zhang, L.

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Zhang, X.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

Zhao, D.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhao, J.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Zhong, Y. L.

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Zhou, J.

Zhou, Q.

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Zhou, W.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhu, J.

Zhu, Z. H.

Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

ACS Nano (2)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. W. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Adv. Opt. Mater. (1)

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Appl. Phys. Lett. (6)

H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

J. T. Liu, N. H. Liu, J. Li, X. Jing Li, and J. H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

IEEE Trans. Nanotechnol. (1)

S. Asgari and N. Granpayeh, “Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits,” IEEE Trans. Nanotechnol. 17(3), 533–542 (2018).
[Crossref]

J. Appl. Phys. (2)

H. J. Li, Y. Z. Ren, M. Qin, and L. L. Wang, “Multispectral perfect absorbers using plasmonically induced interference,” J. Appl. Phys. 123(20), 203102 (2018).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. (2)

S. Asgari, Z. G. Kashani, and N. Granpayeh, “Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators,” J. Opt. 20(4), 045001 (2018).
[Crossref]

T. J. Cui, “Microwave metamaterials - From passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (3)

Y. M. Qing, H. F. Ma, S. Yu, and T. J. Cui, “Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes,” J. Phys. D: Appl. Phys. 52(1), 015104 (2019).
[Crossref]

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32LT01 (2016).
[Crossref]

L. A. Bian, L. Yang, P. Liu, Y. Chen, H. Liu, and Q. Zhou, “Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer,” J. Phys. D: Appl. Phys. 51(2), 025106 (2018).
[Crossref]

Light. Sci. Appl. (1)

Q. Xu, T. Ma, M. Danesh, B. N. Shivananju, S. Gan, J. Song, C. W. Qiu, H. M. Cheng, W. Ren, and Q. Bao, “Effects of edge on graphene plasmons as revealed by infrared nanoimaging,” Light. Sci. Appl. 6, e16204 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

L. Peng, L. Zhang, J. Yuan, C. Chen, Q. Bao, C. W. Qiu, Z. Peng, and K. Zhang, “Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy,” Nanotechnology 28(26), 264001 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Natl. Sci. Rev. (1)

T. J. Cui, “Microwave metamaterials,” Natl. Sci. Rev. 5(2), 134–136 (2018).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. E. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Opt. Commun. 427, 418–425 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics Res. (2)

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Phys. Rev. B (1)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Sci. Rep. (1)

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[Crossref] [PubMed]

Science (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the proposed graphene-based metamaterial absorber. (b) Complex permittivity of graphene monolayer as a function of chemical potential.
Fig. 2
Fig. 2 (a) Simulation results and CMT fitted results of absorption spectra for TE polarization. (b) The effective impedance of the absorber. (c) The reflection phase of the absorber. (d) The group time delay of the spectrum.
Fig. 3
Fig. 3 The electric field intensity (|E|) and electric field amplitude (Ey) for (a) GMR1 mode at 1558.5 nm; (b) GMR0 mode at 1658.5 nm.
Fig. 4
Fig. 4 (a) Absorption response of the absorber as chemical potential of graphene monolayer under vertical illumination with TE polarization. (b) The relationship between μc and the absorption of different GMR modes. (c) The difference between the two GMR modes corresponds to the absorption. (d) The absorption spectra with different μc of graphene.
Fig. 5
Fig. 5 Variations of the absorption spectra of the system with normal illumination and TE polarization for variation of geometric parameters: (a) grating period, P; (b) grating strip width, W; (c) grating height, hd; and (d) SiO2 spacer thickness, hs. In each case, other parameters are not changed.
Fig. 6
Fig. 6 (a) and (b) are the absorption spectra of the system for P = 1.26 μm. Note that other geometric parameters are not changed. The electric field intensity (|E|) and electric field amplitude (Ey) for (c) 1506.3 nm; (d) 1532 nm; (e) 1549 nm; (f) 1551.5 nm.
Fig. 7
Fig. 7 (a) Absorption spectrum of the system for TM polarization. (b) Absorption response of the absorber as chemical potential of graphene monolayer. (c) The group time delay of the spectrum. (d) The relationship between μc and the absorption of different GMR modes.

Tables (1)

Tables Icon

Table 1 Comparison of Proposed Absorber with Similar Plans

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ g = i e 2 k B T π ( ω + i τ 1 ) [ μ c k B T + 2 ln ( exp ( μ c k B T ) + 1 ) ] + i e 2 4 π ln [ 2 | μ c | ( ω + i τ 1 ) 2 | μ c | + ( ω + i τ 1 ) ] ,
A = 1 | r | 2 = 4 δ γ ( ω ω 0 ) 2 + ( δ + γ ) 2 .
Z = ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 .

Metrics