Abstract

In this work, we propose an analytical model for estimating confinement loss in Tube Lattice Fibers. It is based on the single-tube model and the inhibited coupling waveguiding mechanism. The comparison with numerical simulations of tube lattice fibers having different geometrical parameters and dielectric refractive indexes demonstrates the model validity and effectiveness. Being based only on analytical closed formulas, it constitutes a useful tool for rapid estimation of TLF CL. It also gives a more in-depth insight into the TLF guiding mechanisms, confirming the inhibited coupling is an appropriate and effective model for such kind of fibers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Empirical formulas for calculating loss in hollow core tube lattice fibers

Luca Vincetti
Opt. Express 24(10) 10313-10325 (2016)

Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes

L. Vincetti and V. Setti
Opt. Express 20(13) 14350-14361 (2012)

Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide

Liu Yang, Daoxin Dai, Bo Yang, Zhen Sheng, and Sailing He
Appl. Opt. 48(4) 672-678 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
    [Crossref]
  2. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref] [PubMed]
  3. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
    [Crossref]
  4. H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, “Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers,” Opt. Lett. 42, 179–182 (2017).
    [Crossref] [PubMed]
  5. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
    [Crossref]
  6. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. Russell, “Generation of broadband mid-ir and uv light in gas-filled single-ring hollow-core pcf,” Opt. Express 25, 7637–7644 (2017).
    [Crossref] [PubMed]
  7. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
    [Crossref]
  8. R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
    [Crossref] [PubMed]
  9. C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.
  10. X. lu Liu, W. Ding, Y. ying Wang, S. fei Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42, 863–866 (2017).
    [Crossref]
  11. F. Giovanardi, A. Cucinotta, and L. Vincetti, “Inhibited coupling guiding hollow fibers for label-free dna detection,” Opt. Express 25, 26215–26220 (2017).
    [Crossref] [PubMed]
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref] [PubMed]
  13. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [Crossref]
  14. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE Journal of Selected Topics in Quantum Electronics 22, 146–155 (2016).
    [Crossref]
  15. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
    [Crossref] [PubMed]
  16. L. Rosa and L. Vincetti, “Analytical estimation of confinement loss in tube lattice fibers,” in “Advanced Photonics 2018,” (Optical Society of America, 2018), p. JTu5A.65.
  17. M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).
  18. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref] [PubMed]

2017 (5)

2016 (4)

2013 (2)

2011 (1)

2010 (1)

2007 (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref]

1969 (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).

Ahmed, G.

Amsanpally, A.

Argyros, A.

Bayya, S. S.

Baz, A.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Biriukov, A. S.

Blondy, J. M.

Cao, L.

Cassataro, M.

Chafer, M.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Cucinotta, A.

Debord, B.

Dianov, E. M.

Ding, W.

Edavalath, N. N.

fei Gao, S.

Feng, X.

Frosz, M. H.

Gao, Y.

Gattass, R. R.

Gérôme, F.

Gibson, D.

Giovanardi, F.

Günendi, M. C.

Hu, J.

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.

Hugonnot, E.

Jian, S.

Kharadly, M. M. Z.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE Journal of Selected Topics in Quantum Electronics 22, 146–155 (2016).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Lewis, J. E.

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).

Li, H.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

lu Liu, X.

Maurel, M.

McClain, C. C.

Ménard, J.-M.

Menyuk, C. R.

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
[Crossref] [PubMed]

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.

Nguyen, V. Q.

Novoa, D.

Pla, J.

Plotnichenko, V. G.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Ren, G.

Rhonehouse, D.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Rosa, L.

L. Rosa and L. Vincetti, “Analytical estimation of confinement loss in tube lattice fibers,” in “Advanced Photonics 2018,” (Optical Society of America, 2018), p. JTu5A.65.

Russell, P. S.

Sanghera, J. S.

Scol, F.

Semjonov, S. L.

Setti, V.

Shaw, L. B.

Thapa, R.

Travers, J. C.

Uebel, P.

Vincetti, L.

Wang, J.

Wang, P.

Wei, C.

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.

Weiblen, R. J.

Yin, B.

ying Wang, Y.

Young, J. T.

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE Journal of Selected Topics in Quantum Electronics 22, 146–155 (2016).
[Crossref]

Zhu, B.

IEEE Journal of Selected Topics in Quantum Electronics (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE Journal of Selected Topics in Quantum Electronics 22, 146–155 (2016).
[Crossref]

Opt. Express (9)

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref] [PubMed]

F. Giovanardi, A. Cucinotta, and L. Vincetti, “Inhibited coupling guiding hollow fibers for label-free dna detection,” Opt. Express 25, 26215–26220 (2017).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. Russell, “Generation of broadband mid-ir and uv light in gas-filled single-ring hollow-core pcf,” Opt. Express 25, 7637–7644 (2017).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Proc. IEE (1)

M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Other (2)

L. Rosa and L. Vincetti, “Analytical estimation of confinement loss in tube lattice fibers,” in “Advanced Photonics 2018,” (Optical Society of America, 2018), p. JTu5A.65.

C. Wei, J. T. Young, C. R. Menyuk, and J. Hu, “Temperature sensor using fluid-filled negative curvature fibers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2018), p. JW2A.179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Left: Geometry of TLF cross-section; center: E-field magnitude distribution examples of core, hole, and dielectric modes; right: CL spectrum. (b) TLF mode dispersion map (top) and fundamental mode confinement loss (bottom) around F = 1; in the dispersion map, the gray dots represent the effective indexes of cladding modes; the dispersion curves of DMs with slow spatial oscillation are shown with colored solid and dashed lines, for HE-like and EH-like modes, respectively; the corresponding electric field distributions are shown in the insets; the brown dashed-dotted line shows the dispersion curve of a quickly spatially oscillating DM; the dotted blue lines shows the FM-DMs phase-matching frequencies, corresponding to peaks in the loss spectrum (except for the DM with quick oscillations). (c) Single-tube model validation. Top: Dispersion curves of HE (solid) and EH (dashed) modes with same oscillation period along the tube perimeter and the same profile across the tube boundary orthogonal direction. Bottom: Cross-sections of the analyzed fibers and electric field distributions of the two kinds of modes compared in the analysis.
Fig. 2
Fig. 2 Left: Amplitudes of the Lorentzian resonances of the CLMs. Right: pν(F) (thick solid line), L ( F F c μ , ν HE ) (solid lines), and L ( F F c μ , ν EH ) (dashed lines) spectra for ν = 2, μ ≤ 8, rext = 5μm, t = 1μm, and n = 1.44.
Fig. 3
Fig. 3 Cut-off normalized frequencies of the dielectric tube modes HEµ,ν (left) and EHµ,ν (right) as a function of tube aspect-ratio parameter t/rext for two different refractive indexes: n = 1.44 (top), and n = 2.5 (bottom). Symbols refer to numerical solutions, solid lines to approximated analytical formulas.
Fig. 4
Fig. 4 CL spectra for Fibers from #1 to #10 (left-right, top-down) given by numerical simulations (red curve) and analytical model (orange curve), and their ratio (cyan curve). The curve from the analytical formula for the minima proposed in [15] is also shown in green colour. The solid black lines represent values of 2.0 and 0.5 for the ratio.

Tables (1)

Tables Icon

Table 1 TLF design parameters for different spectral ranges.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k = π 2 λ S E FM E DM d S
L ( F ) = γ 2 γ 2 + F 2 ,
A ( μ ) = 2 10 3 e 0.05 | μ 1 | 2.6 .
F c μ , ν HE = { | 0.21 + 0.175 μ 0.1 ( μ 0.35 ) 2 | ( t r ext ) ( 0.55 + 5 10 3 n 4 1 ) + 0.04 μ ( t r ext ) if ν = 1 0.3 n 0.3 ( 2 ν ) 1.2 | μ 0.8 | ( t r ext ) + ν 1 if ν 2
F c μ , ν EH = { ( 0.73 + 0.57 μ 0.8 + 1.5 4 0.04 μ 0.35 ) ( t r ext ) 0.5 n 1 10 ( μ + 0.5 ) 0.1 if ν = 1 11.5 ν 1.2 ( 7.75 ν ) 0.34 + μ 4 ( n 1.2 ) 1.15 ( μ + 0.2 n ) 0.15 ( t r ext ) ( 0.75 + 0.06 n 1.15 + 0.1 1.44 n ( ν 2 ) ) + ν 1 if ν 2
CL an ( F ) = ν p ν ( F ) CL min ( F ) ,
p ν ( F ) = μ A ( μ ) ( L ( F F c μ , ν HE ) + L ( F F c μ , ν EH ) ) ,

Metrics