Abstract

Here we demonstrate an 8x4 multi-wavelength selective ring resonator based crossbar switch matrix implemented in a 220-nm silicon photonics foundry for interconnecting electronic packet switches in scalable data centers. This switch design can dynamically assign up to two wavelength channels for any port-port connection, providing almost full connectivity with significant reduction in latency, cost and complexity. The switch unit cell insertion loss was measured at 0.8 dB, with an out-of-band rejection of 32 dB at 400 GHz channel separation. All the ring resonator heaters were thermally tuned, with heaters controlled by a custom 64-channel DAC driver. Detailed measurements on the whole switch showed standard deviation of 2 dB in losses across different paths, standard deviation of 0.33 nm in resonant wavelength and standard deviation of 0.01 nm/mW in ring heater tuning efficiency. Data transmission experiments at 40 Gbps showed negligible penalty due to crosstalk paths through the switch.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low Latency Optical Switch for High Performance Computing With Minimized Processor Energy Load [Invited]

Shiyun Liu, Qixiang Cheng, Muhammad Ridwan Madarbux, Adrian Wonfor, Richard V. Penty, Ian H. White, and Philip M. Watts
J. Opt. Commun. Netw. 7(3) A498-A510 (2015)

Energy Implications of Photonic Networks With Speculative Transmission

Philip M. Watts, Simon W. Moore, and Andrew W. Moore
J. Opt. Commun. Netw. 4(6) 503-513 (2012)

Photonic switching in high performance datacenters [Invited]

Qixiang Cheng, Sébastien Rumley, Meisam Bahadori, and Keren Bergman
Opt. Express 26(12) 16022-16043 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).
  2. R. Stabile, A. Albores-Mejia, and K. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).
    [Crossref] [PubMed]
  3. R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
    [Crossref]
  4. A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
    [Crossref]
  5. L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
    [Crossref]
  6. L. Qiao, W. Tang, and T. Chu, “16× 16 non-blocking silicon electro-optic switch based on mach-zehnder interferometers,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1C-2.
    [Crossref]
  7. D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.
  8. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref] [PubMed]
  9. Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
    [Crossref]
  10. N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
    [Crossref]
  11. R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  12. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
    [Crossref]
  13. Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
    [Crossref]
  14. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.
  15. Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
    [Crossref]
  16. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
    [Crossref] [PubMed]
  17. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref] [PubMed]
  18. N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).
  19. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
    [Crossref]
  20. P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
    [Crossref]
  21. R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. Yoo, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21, 32655–32667 (2013).
    [Crossref]
  22. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  23. D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
    [Crossref]
  24. Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.
  25. Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
    [Crossref]
  26. A. S. Khope, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic wdm crossbar switch for data centers,” inIEEE Opt. Interconnects (OI) Conf. pp. 48–49 (2016).
  27. A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).
  28. R. A. Soref and B. E. Little, “Proposed n-wavelength m-fiber wdm crossconnect switch using active microring resonators,” IEEE Photonics Technol. Lett. 10, 1121–1123 (1998).
    [Crossref]
  29. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. express 16, 535–548 (2008).
    [Crossref] [PubMed]
  30. T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.
  31. V. E. Beneš, Mathematical theory of connecting networks and telephone traffic, vol. 17 (Academic press, 1965).
  32. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406–424 (1953).
    [Crossref]
  33. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).
  34. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
    [Crossref]
  35. A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
    [Crossref]
  36. A. A. Saleh, “Scaling-out data centers using photonics technologies,” in Photonics in Switching, (Optical Society of America, 2014), pp. JM4B–5.
  37. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
    [Crossref]
  38. J. K. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [Crossref] [PubMed]
  39. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  40. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).
  41. J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.
  42. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
    [Crossref]
  43. S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
    [Crossref]
  44. A. Photonics, “American Institute of Manufacturing Integrated Photonics,” http://www.aimphotonics.com/pdk/ (2016).
  45. N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
    [Crossref]
  46. G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946).
  47. D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2 (Prentice-HallInternational New Jersey, 1992).
  48. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
    [Crossref]
  49. M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
    [Crossref]
  50. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref] [PubMed]
  51. C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
    [Crossref]
  52. A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
    [Crossref] [PubMed]
  53. M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness and the building block hypothesis,” D. Whitley, ed., Foundations of Genetic Algorithms (Elsevier2014), Vol.2, pp. 109–126.
  54. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.
  55. Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
    [Crossref]
  56. A. Photonics, “American Institute of Manufacturing Integrated Photonics,” http://www.aimphotonics.com/ (2016).
  57. A. Photonics, “American Institute of Manufacturing Integrated Photonics, west coast hub,” https://aim.ucsb.edu/ (2016).

2018 (2)

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

2017 (9)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

2014 (2)

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
[Crossref]

2013 (4)

R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. Yoo, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21, 32655–32667 (2013).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

2012 (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

R. Stabile, A. Albores-Mejia, and K. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).
[Crossref] [PubMed]

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

2011 (2)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

2010 (1)

2009 (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

2008 (3)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
[Crossref]

Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. express 16, 535–548 (2008).
[Crossref] [PubMed]

2004 (1)

1999 (2)

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

1998 (1)

R. A. Soref and B. E. Little, “Proposed n-wavelength m-fiber wdm crossconnect switch using active microring resonators,” IEEE Photonics Technol. Lett. 10, 1121–1123 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

1953 (1)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406–424 (1953).
[Crossref]

1946 (1)

G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946).

Agarwal, A.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Akiyama, S.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Albores-Mejia, A.

Alferness, R. C.

A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
[Crossref] [PubMed]

A. S. Khope, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic wdm crossbar switch for data centers,” inIEEE Opt. Interconnects (OI) Conf. pp. 48–49 (2016).

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).

Anantharam, V.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

Anderson, G.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Armistead, A.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Asghari, M.

Baehr-Jones, T.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bahadori, M.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Baks, C. W.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Bannon, R.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Bazzaz, H. H.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Beausoleil, R. G.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Beneš, V. E.

V. E. Beneš, Mathematical theory of connecting networks and telephone traffic, vol. 17 (Academic press, 1965).

Bergman, K.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Bernier, E.

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Bertsekas, D. P.

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2 (Prentice-HallInternational New Jersey, 1992).

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Birkhoff, G.

G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946).

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bolk, J.

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

Borkar, S.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Boving, S.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Bowers, J. E.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
[Crossref] [PubMed]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).

A. S. Khope, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic wdm crossbar switch for data centers,” inIEEE Opt. Interconnects (OI) Conf. pp. 48–49 (2016).

Calhoun, D. M.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Campbell, D.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Carlson, W.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Celo, D.

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

Chen, X.

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Cheng, Q.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

Chen-Sun, P.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Cheung, S.

Chrostowski, L.

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “16× 16 non-blocking silicon electro-optic switch based on mach-zehnder interferometers,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1C-2.
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Clos, C.

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406–424 (1953).
[Crossref]

Cong, G.

Coolbaugh, D.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Cunningham, J. E.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

Dally, W.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

DasMahapatra, P.

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

Denneau, M.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Desai, G.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Descos, A.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Ding, R.A.

Dong, P.

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

Dumais, P.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Duong, L. H. K.

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Dupuis, N.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Fainman, Y.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Faralli, S.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Farrington, N.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Felderman, B.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Feng, D.

Fiorentino, M.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Forencich, A.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

Forrest, S.

M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness and the building block hypothesis,” D. Whitley, ed., Foundations of Genetic Algorithms (Elsevier2014), Vol.2, pp. 109–126.

Fournier, M.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Fowler, D.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Franzon, P.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Gallager, R. G.

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2 (Prentice-HallInternational New Jersey, 1992).

Gambini, F.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Gazman, A.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Geng, D.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Germano, P.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Gill, D. M.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Goebuchi, Y.

Goh, T.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

Goodwill, D. J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Gossard, A. C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Green, W. M.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
[Crossref]

Hammond, S. D.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Harrod, W.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Hasegawa, J.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

Hattori, K.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

He, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Helkey, R.

Henriksson, J.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Herrick, R. W.

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Heyn, P. De

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Hill, K.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Hiller, J.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Himeno, A.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

Hirokawa, T.

Hisada, M.

Hitoshi, K.

Hochberg, M.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Holland, J.

M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness and the building block hypothesis,” D. Whitley, ed., Foundations of Genetic Algorithms (Elsevier2014), Vol.2, pp. 109–126.

Hölzle, U.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Huang, Y.

Huang, Z.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Humblet, P.

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2 (Prentice-HallInternational New Jersey, 1992).

Ikeda, K.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Inoue, T.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Jacobs, J.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Janosik, N.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Jiang, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Jung, D.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Kanagala, A.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Karp, S.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Kato, T.

Kawashima, H.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

Keckler, D.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Kennedy, M.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Khope, A. S.

Khope, A. S. P.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).

Kimura, T.

Klein, Stephenand

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Kokubun, Y.

Konoike, R.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

Kopp, C.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Koshino, K.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

Kuchta, D. M.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kurahashi, T.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Kurczveil, G.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Kwon, K.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

Leake, G.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Lee, B. G.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

Leijtens, X. J.

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

Li, D.

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

Li, M.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Li, X.

Li, Y.

Li, Z.

Liang, D.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Liang, H.

Lim, E.-J.

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

Little, B. E.

R. A. Soref and B. E. Little, “Proposed n-wavelength m-fiber wdm crossconnect switch using active microring resonators,” IEEE Photonics Technol. Lett. 10, 1121–1123 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

Liu, W.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Liu, Y.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Lo, G.-Q.

Lu, L.

Lu, Z.

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

Lucas, R.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

Luo, J.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Luo, Y.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Ma, Y.

Manganelli, C.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Matsumaro, K.

Matsumoto, T.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Matsuura, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

McKeown, N.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

Mehrvar, H.

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Mekkittikul, A.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

Mitchell, M.

M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness and the building block hypothesis,” D. Whitley, ed., Foundations of Genetic Algorithms (Elsevier2014), Vol.2, pp. 109–126.

Mookherjea, S.

Moresco, M.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Muller, R. S.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Namiki, S.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Netherton, A. M.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

Nikolova, D.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Norman, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Norman, J. C.

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Novack, A.

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Ochikubo, L.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Ohtsuka, M.

Okamoto, K.

Okuno, M.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

Ong, J.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Orcutt, J. S.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Oton, C.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Paloczi, G. T.

Papen, G.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Penty, R. V.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Pintus, P.

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

Polster, R.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Poon, A. W.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Poon, J. K.

Porter, G.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Proietti, R.

Provost, J.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Qian, W.

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “16× 16 non-blocking silicon electro-optic switch based on mach-zehnder interferometers,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1C-2.
[Crossref]

Radhakrishnan, S.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Richards, M.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Rodrigues, A.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Rohit, A.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

Rosing, T.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Rumley, S.

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Rylyakov, A. V.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Saeidi, M.

Saleh, A. A.

A. S. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “On-chip wavelength locking for photonic switches,” Opt. Lett. 42, 4934–4937 (2017).
[Crossref] [PubMed]

A. S. Khope, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic wdm crossbar switch for data centers,” inIEEE Opt. Interconnects (OI) Conf. pp. 48–49 (2016).

A. A. Saleh, “Scaling-out data centers using photonics technologies,” in Photonics in Switching, (Optical Society of America, 2014), pp. JM4B–5.

Saleh, A. A. M.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).

Scarpelli, A.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Scheuer, J.

Schow, C.

Schow, C. L.

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Scott, S.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Seki, M.

Sekiguchi, S.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Seok, T. J.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Shafiiha, R.

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Simmons, J.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Singh, A.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Snavely, A.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Soref, R. A.

R. A. Soref and B. E. Little, “Proposed n-wavelength m-fiber wdm crossconnect switch using active microring resonators,” IEEE Photonics Technol. Lett. 10, 1121–1123 (1998).
[Crossref]

Stabile, R.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
[Crossref]

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

R. Stabile, A. Albores-Mejia, and K. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).
[Crossref] [PubMed]

Sterling, T.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Strong, R.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Stuart, S.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Su, Z.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Subramanya, V.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Suda, S.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

Sugaya, T.

Suzuki, K.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Takabayashi, K.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Takahashi, H.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

Tanda, E.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “16× 16 non-blocking silicon electro-optic switch based on mach-zehnder interferometers,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1C-2.
[Crossref]

Tanizawa, K.

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Theogarajan, L.

Timurdogan, E.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Torres, A.

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Toyama, M.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

Tu, X.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Uetake, A.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Vahdat, A.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
[Crossref]

Volet, N.

Vos, K. De

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Walrand, J.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

Wan, Y.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Wanderer, J.

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

Wang, M.

Wang, Z.

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Watts, M.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

Wei, Y.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Wen, K.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

White, I. H.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

Williams, K.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
[Crossref]

R. Stabile, A. Albores-Mejia, and K. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).
[Crossref] [PubMed]

Williams, K. A.

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

Williams, R. S.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Wonfor, A.

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

Wu, M. C.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

Xia, F.

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
[Crossref]

Xia, Y.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Xu, J.

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Yan, S.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Yang, P.

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Yang, S.

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Yariv, A.

Yelick, K.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

Yin, Y.

Yokoyama, N.

Yoo, S.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

Yu, R.

Zhang, C.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

Zhang, Y.

Zhang, Z.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

Zhao, F.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

Zhao, S.

Zheng, X.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

Zhou, L.

Zhu, Z.

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

ACM SIGCOMM Comput. Commun. Rev. (2)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev. 41, 339–350 (2011).

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev. 45, 183–197 (2015).
[Crossref]

ACS Photonics (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2017).
[Crossref]

Bell Syst. Tech. J. (1)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406–424 (1953).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical crosspoint matrix using broadband resonant switches,” IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).
[Crossref]

IEEE Photon. J. (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting cmos manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
[Crossref]

IEEE Photonics J. (1)

C. Manganelli, P. Pintus, F. Gambini, D. Fowler, M. Fournier, S. Faralli, C. Kopp, and C. Oton, “Large-fsr thermally tunable double-ring filters for wdm applications in silicon photonics,” IEEE Photonics J. 9, 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. A. Soref and B. E. Little, “Proposed n-wavelength m-fiber wdm crossconnect switch using active microring resonators,” IEEE Photonics Technol. Lett. 10, 1121–1123 (1998).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[Crossref]

IEEE Transactions on Commun. (1)

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Commun. 47, 1260–1267 (1999).
[Crossref]

J. Light. Technol. (9)

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Light. Technol. 36, 773–788 (2018).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and C. L. Schow, “Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 × 2 mach–zehnder silicon photonic switches,” J. Light. Technol. 33, 3597–3606 (2015).
[Crossref]

Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Scalable, low-energy hybrid photonic space switch,” J. Light. Technol. 31, 3077–3084 (2013).
[Crossref]

N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. Green, and B. G. Lee, “Nanosecond-scale mach-zehnder-based cmos photonic switch fabrics,” J. Light. Technol. 35, 615–623 (2017).

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 88 strictly nonblocking thermooptic matrix switch,” J. Light. Technol. 17, 1192 (1999).
[Crossref]

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Light. Technol. 32, 201–207 (2014).
[Crossref]

A. Rohit, J. Bolk, X. J. Leijtens, and K. A. Williams, “Monolithic nanosecond-reconfigurable 4 × 4 space and wavelength selective cross-connect,” J. Light. Technol. 30, 2913–2921 (2012).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997).
[Crossref]

Z. Wang, J. Xu, P. Yang, Z. Wang, L. H. K. Duong, and X. Chen, “High-radix nonblocking integrated optical switching fabric for data center,” J. Light. Technol. 35, 4268–4281 (2017).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Microsyst. Nanoeng. (1)

D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Modular architecture for fully non-blocking silicon photonic switch fabric,” Microsyst. Nanoeng. 3, 16071 (2017).
[Crossref]

Nat. Photonics (1)

Y. Vlasov, W. M. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242 (2008).
[Crossref]

Opt. Express (7)

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26, 16022–16043 (2018).
[Crossref] [PubMed]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and K. Hitoshi, “Ultra-compact 32 × 32 strictly-non-blocking si-wire optical switch with fan-out lga interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref] [PubMed]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic mach-zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. Yoo, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21, 32655–32667 (2013).
[Crossref]

Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. express 16, 535–548 (2008).
[Crossref] [PubMed]

J. K. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R.A. Ding, E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for soi optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Opt. Lett. (2)

Parallel Comput. (1)

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, “Optical interconnects for extreme scale computing systems,” Parallel Comput. 64, 65–80 (2017).
[Crossref]

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Sci. Reports (2)

Z. Lu, D. Celo, H. Mehrvar, E. Bernier, and L. Chrostowski, “High-performance silicon photonic tri-state switch based on balanced nested mach-zehnder interferometer,” Sci. Reports 7, 12244 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32× 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Reports 7, 42306 (2017).
[Crossref]

SIGCOMM Comput. Commun. Rev. (1)

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” SIGCOMM Comput. Commun. Rev. 43, 447–458 (2013).
[Crossref]

Univ. Nac. Tucuman, Ser. A (1)

G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946).

Other (19)

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2 (Prentice-HallInternational New Jersey, 1992).

A. Photonics, “American Institute of Manufacturing Integrated Photonics,” http://www.aimphotonics.com/pdk/ (2016).

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in ISLC2018 (2018).

J. C. Norman, Z. Zhang, D. Jung, Y. Wan, M. Kennedy, A. Torres, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “High performance quantum dot lasers epitaxially integrated on si,” in Quantum Communications and Quantum Imaging XVI,vol. 10771 (International Society for Optics and Photonics, 2018), p. 107710D.

M. Mitchell, J. Holland, and S. Forrest, “Relative building-block fitness and the building block hypothesis,” D. Whitley, ed., Foundations of Genetic Algorithms (Elsevier2014), Vol.2, pp. 109–126.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, (IEEE, 2009), pp. 1–2.

A. Photonics, “American Institute of Manufacturing Integrated Photonics,” http://www.aimphotonics.com/ (2016).

A. Photonics, “American Institute of Manufacturing Integrated Photonics, west coast hub,” https://aim.ucsb.edu/ (2016).

A. S. Khope, A. A. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic wdm crossbar switch for data centers,” inIEEE Opt. Interconnects (OI) Conf. pp. 48–49 (2016).

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic wdm switching for scalable data center and hpc interconnect networks,” in OptoElectronics Commun. Conf. (OECC) Photonics Switch. (PS) (2016).

A. A. Saleh, “Scaling-out data centers using photonics technologies,” in Photonics in Switching, (Optical Society of America, 2014), pp. JM4B–5.

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2015), pp. IT4A–3.

T. J. Seok, J. Luo, Z. Huang, K. Kwon, J. Henriksson, J. Jacobs, L. Ochikubo, R. S. Muller, and M. C. Wu, “Mems-actuated 8× 8 silicon photonic wavelength-selective switches with 8 wavelength channels,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B-1.

V. E. Beneš, Mathematical theory of connecting networks and telephone traffic, vol. 17 (Academic press, 1965).

L. Qiao, W. Tang, and T. Chu, “16× 16 non-blocking silicon electro-optic switch based on mach-zehnder interferometers,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), pp. Th1C-2.
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32× 32 silicon photonic switch,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016 21st, (IEEE, 2016), pp. 1–3.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, D. Keckler, Stephenand Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study: Technology challenges in achieving exascale systems,” Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Tech. Rep15 (2008).

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low insertion loss and power efficient 32× 32 silicon photonics switch with extremely-high-δ plc connector,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), pp. Th4B–5.

R. Konoike, K. Suzuki, T. Inoue, T. Matsumoto, T. Kurahashi, A. Uetake, K. Takabayashi, S. Akiyama, S. Sekiguchi, K. Ikeda, S. Namiki, and H. Kawashima, “Lossless operation of soa-integrated silicon photonics switch for 8 × 32-gbaud 16-qam wdm signals,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of NxNxM switch with L MRR (Micro Ring Resonators) per crosspoint (b) Switch unit cell (c) Layout of a 8x4,L=2 switch (d) Die Shot of the switch with I/O marked
Fig. 2
Fig. 2 (a) Latency of the timeslots is plotted against the load in the switching network. Load is defined as average requests/timeslot. (b) Leaf spine architecture without optical switch (c) Leaf spine architecture with WDM optical switch.
Fig. 3
Fig. 3 Two λ switching is demonstrated in (a) λ1 ON and λ2 ON, (b) λ1 ON and λ2 OFF, (c) λ1 OFF and λ1 ON, (d) λ1 OFF and λ1 OFF, (e) Transmission spectra of a typical unit cell, the black lines correspond to one FSR = 25.6 nm and typical out of band rejection is 32 dB for 400 GHz spacing (f) Off resonance loss of 10, 20, and 40 ring resonators in series, (g) Tuning curve of a micro-ring resonator in a unit cell, (h) Tuning efficiency of 0.39 nm/mW is calculated from the tuning curve. Here we plot λres vs Total Power,P (mW) and Average voltage Vavg (V) applied to the second order ring resonator, (i) Heater I-V and R-V is plotted and shows that heater resistance changes monotonically with bias voltage.
Fig. 4
Fig. 4 Heatmaps of (a) On-chip Path Loss, (b) Resonant Wavelength and (c) Tuning Efficiency at different locations in the 8 × 4 switch, Corresponding histograms of (d) On-chip Path Loss, (e) Resonant Wavelength and (f) Tuning Efficiency.
Fig. 5
Fig. 5 (a) rise time for three different voltage swing, (b) fall time for three different voltage swing and (c) rise time, and fall time vs voltage swing.
Fig. 6
Fig. 6 (a) Test setup from multi channel BERT testing at 40 Gbps (b) Multi-wavelength crosstalk measurement for (signal) 0, 1, 2, and 3 crosstalk sources, Eye diagram for (c) no crosstalk source, (d) one crosstalk sources, (e) two crosstalk sources, and (f) three crosstalk sources
Fig. 7
Fig. 7 (a) Number of signal pads which is proportional to complexity (the number of switching elements) (b) tuning power consumption (c) worst case path loss vs switch radix.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L a t e n c y ( L = 1 , M > = N ) = Λ / ( 1 Λ )

Metrics