Abstract

A two-dimensional measurement of fuel distribution in a gasoline spray flow was performed using multiple laser-induced plasma-forming regions. Multiple plasma-forming regions were generated by a laser sheet with a low breakdown threshold for a two-phase flow. To observe the formation of multiple laser-induced plasma-forming regions, shadowgraphs were imaged using a high-speed camera. Hydrogen and oxygen atomic emissions from the plasma-forming regions were obtained by attaching bandpass filters to the high-speed camera, and a two-dimensional visualization of the fuel distribution in the wide plasma-forming region was obtained by dividing the hydrogen line-filtered image with the oxygen line-filtered image. The result complements a novel method for two-dimensional measurement of instantaneous fuel concentration in the reacting flow by utilizing laser-induced breakdown spectroscopy (LIBS).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames

Terrence R. Meyer, Sukesh Roy, Vincent M. Belovich, Edwin Corporan, and James R. Gord
Appl. Opt. 44(3) 445-454 (2005)

High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

Michael Cundy, Torsten Schucht, Olaf Thiele, and Volker Sick
Appl. Opt. 48(4) B94-B104 (2009)

Light sheet fluorescence microscopic imaging for the primary breakup of diesel and gasoline sprays with real-world fuels

Alexander Durst, Michael Wensing, and Edouard Berrocal
Appl. Opt. 57(10) 2704-2714 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. T. Vu and F. C. Gouldin, “Flow measurements in a model swirl combustor,” AIAA J. 20(5), 642–651 (1982).
    [Crossref]
  2. G. Cox, “Gas velocity measurement in fires by the cross-correlation of random thermal fluctuations-a comparison with conventional techniques,” Combust. Flame 28, 155–163 (1977).
    [Crossref]
  3. S. Tavoularis, Measurement in fluid mechanics, (Cambridge University, 2005), p. 193.
  4. A. C. Eckbreth, Laser diagnostics for combustion temperature and species, vol. 3. (CRC Press, 1996), p.1.
  5. K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
    [Crossref]
  6. B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
    [Crossref]
  7. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
    [Crossref]
  8. J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
    [Crossref]
  9. Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
    [Crossref]
  10. P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
    [Crossref]
  11. S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
    [Crossref]
  12. J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
    [Crossref]
  13. Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
    [Crossref]
  14. Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
    [Crossref]
  15. J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
    [Crossref]
  16. H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
    [Crossref]
  17. S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
    [Crossref]
  18. N. Kawahara, K. Tsuboi, and E. Tomita, “Laser-induced plasma generation and evolution in a transient spray,” Opt. Express 22(S1Suppl 1), A44–A52 (2014).
    [Crossref] [PubMed]
  19. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
    [Crossref]
  20. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
    [Crossref]

2018 (2)

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

2017 (3)

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

2016 (1)

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

2014 (2)

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

N. Kawahara, K. Tsuboi, and E. Tomita, “Laser-induced plasma generation and evolution in a transient spray,” Opt. Express 22(S1Suppl 1), A44–A52 (2014).
[Crossref] [PubMed]

2013 (2)

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
[Crossref]

S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
[Crossref]

2011 (1)

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

2006 (1)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

2005 (2)

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

2000 (1)

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
[Crossref]

1982 (1)

B. T. Vu and F. C. Gouldin, “Flow measurements in a model swirl combustor,” AIAA J. 20(5), 642–651 (1982).
[Crossref]

1977 (1)

G. Cox, “Gas velocity measurement in fires by the cross-correlation of random thermal fluctuations-a comparison with conventional techniques,” Combust. Flame 28, 155–163 (1977).
[Crossref]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

Aldén, M.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Barlow, R. S.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Buckley, S. G.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

Carter, C. D.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
[Crossref]

Choi, S. J.

J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

Couris, S.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

Cox, G.

G. Cox, “Gas velocity measurement in fires by the cross-correlation of random thermal fluctuations-a comparison with conventional techniques,” Combust. Flame 28, 155–163 (1977).
[Crossref]

Diaci, J.

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
[Crossref]

Do, H.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

Ferioli, F.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

Gord, J. R.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Gouldin, F. C.

B. T. Vu and F. C. Gouldin, “Flow measurements in a model swirl combustor,” AIAA J. 20(5), 642–651 (1982).
[Crossref]

Gragston, M.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Gregorcic, P.

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
[Crossref]

Hahn, H. T.

S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
[Crossref]

Hammack, S.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Hsu, P. S.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Jiang, N.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Jun, H. M.

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

Kawahara, N.

Kiefer, J.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

Kim, J. H.

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Law, C. K.

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Lee, S. H.

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
[Crossref]

Lee, T.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
[Crossref]

Li, S.

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Li, Z. S.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

McGann, B.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Michalakou, A.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

Možina, J.

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
[Crossref]

Ombrello, T. M.

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Parigger, C.

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
[Crossref]

Patnaik, A. P.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Ren, Y.

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Roy, S.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Skevis, G.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

Stavropoulos, P.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

Tomita, E.

Tröger, J. W.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

Tsuboi, K.

Vu, B. T.

B. T. Vu and F. C. Gouldin, “Flow measurements in a model swirl combustor,” AIAA J. 20(5), 642–651 (1982).
[Crossref]

Wolfrum, J.

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

Wu, Y.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Yang, J. H.

J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

Yao, Q.

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Yoh, J. J.

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Zhang, Z.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

AIAA J. (1)

B. T. Vu and F. C. Gouldin, “Flow measurements in a model swirl combustor,” AIAA J. 20(5), 642–651 (1982).
[Crossref]

Appl. Phys. A (1)

P. Gregorčič, J. Diaci, and J. Možina, “Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy,” Appl. Phys. A 112(1), 49–55 (2013).
[Crossref]

Appl. Phys. B (1)

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhang, S. Li, Y. Ren, Q. Yao, and C. K. Law, “Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas,” Appl. Phys. Lett. 104(2), 023115 (2014).
[Crossref]

Chem. Phys. Lett. (1)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy,” Chem. Phys. Lett. 404(4–6), 309–314 (2005).
[Crossref]

Combust. Flame (4)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. P. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

G. Cox, “Gas velocity measurement in fires by the cross-correlation of random thermal fluctuations-a comparison with conventional techniques,” Combust. Flame 28, 155–163 (1977).
[Crossref]

Energy (2)

J. H. Kim, S. H. Lee, H. Do, and J. J. Yoh, “Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug,” Energy 140, 18–26 (2017).
[Crossref]

H. M. Jun, J. H. Kim, S. H. Lee, and J. J. Yoh, “Towards simplified monitoring of instantaneous fuel concentration in both liquid and gas fueled flames using a combustor injectable LIBS plug,” Energy 160, 225–232 (2018).
[Crossref]

J. Quant. Spectrosc. Ra. (1)

Y. L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Ra. 67(2), 91–103 (2000).
[Crossref]

Opt. Express (1)

Proc. Combust. Inst. (2)

K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30(1), 89–123 (2005).
[Crossref]

B. McGann, C. D. Carter, T. M. Ombrello, S. Hammack, T. Lee, and H. Do, “Gas property measurements in a supersonic combustor using nanosecond gated laser-induced breakdown spectroscopy with direct spectrum matching,” Proc. Combust. Inst. 36(2), 2857–2864 (2017).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (2)

S. H. Lee, H. T. Hahn, and J. J. Yoh, “Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames,” Spectrochim. Acta B At. Spectrosc. 88, 63–68 (2013).
[Crossref]

J. H. Yang, S. J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

Other (2)

S. Tavoularis, Measurement in fluid mechanics, (Cambridge University, 2005), p. 193.

A. C. Eckbreth, Laser diagnostics for combustion temperature and species, vol. 3. (CRC Press, 1996), p.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Experimental setup, (b) H-filtered image of the multiple laser-induced breakdowns (delay time of 300 ns and exposure time of 50 ns), and (c) shadowgraph image of the multiple plasma-forming regions (delay time of 1 μs and exposure time of 50 ns).
Fig. 2
Fig. 2 Shadowgraph images of (a) a laser focused on a single point in air, (b) a laser focused on a single point in spray flow, (c) a planar laser sheet focused in air, and (d) a planar laser sheet focused in spray flow. The images were taken at six different points in time (100 ns, 200 ns, 300 ns, 1 μs, 5 μs, and 25 μs).
Fig. 3
Fig. 3 Outlines of formation of multiple plasmas for five different gasoline flow rates (1.25 mL/min, 2.5 mL/min, 5 mL/min, 7.5 mL/min, and 10 mL/min).
Fig. 4
Fig. 4 Normalized emission signal intensity of (a) H (656.3 nm) and (b) O (777 nm), obtained using three different measurement techniques.
Fig. 5
Fig. 5 Calibration curve between the H/O intensity ratio and the equivalence ratio.
Fig. 6
Fig. 6 Averaged (a) H (656.3 nm) and (b) O (777 nm) filtered image of multiple plasmas in different gasoline flow rates and (c) two-dimensional image of the equivalence ratio.
Fig. 7
Fig. 7 LIBS spectra obtained at a height of 15 mm above the siphon nozzle, at different radial distances.
Fig. 8
Fig. 8 H/O intensity ratio obtained from two-dimensional plasma sheet image and conventional LIBS system at different heights from the spray nozzle (10 mm, 15 mm, and 20 mm).

Tables (1)

Tables Icon

Table 1 Flow conditions of experiments.