Abstract

We demonstrate quantum key distribution (QKD) with classical signals in a seven-core fiber using dense wavelength division multiplexing. Quantum signals are transmitted in an outer core separately and intercore crosstalk (IC-XT) is the main impairment of them. In order to alleviate IC-XT, we propose a quantum-classical interleave scheme. Then the properties of IC-XT are analyzed based on the measurement results, which indicate counter-propagation is a better co-existence method than co-propagation. Finally, we perform QKD experiments in the presence of two classical channels with a channel spacing of 100 GHz between quantum channel and the nearest classical channels. The experiment results prove counter-propagation almost immune to IC-XT, which is consistent with our analysis. Also, the feasibility of the transmission over the range of metropolitan area networks is validated with our scheme.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber

B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello
Opt. Express 19(17) 16665-16671 (2011)

Quantum key distribution over multicore fiber

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields
Opt. Express 24(8) 8081-8087 (2016)

WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km⋅b/s/Hz

S. Chandrasekhar, A. H. Gnauck, Xiang Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T.F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello
Opt. Express 20(2) 706-711 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennet, “Quantum cryptography : Public key distribution and coin tossing,” in Proc. Of IEEE International Conference on Computers, Systems, and Signal processing, (1984), pp. 175–179.
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).
  3. P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [Crossref] [PubMed]
  4. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
    [Crossref]
  5. N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
    [Crossref]
  6. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
    [Crossref]
  7. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
    [Crossref]
  8. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [Crossref]
  9. K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
    [Crossref]
  10. L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
    [Crossref]
  11. Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
    [Crossref] [PubMed]
  12. J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
    [Crossref]
  13. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
    [Crossref]
  14. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.
  15. K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2, 441–454 (2013).
    [Crossref]
  16. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
    [Crossref]
  17. P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8, 345 (2014).
    [Crossref]
  18. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. express 19, 16576–16592 (2011).
    [Crossref] [PubMed]
  19. S. Ö. Arık and J. M. Kahn,“Coupled-core multi-core fibers for spatial multiplexing,” IEEE Photonics Technol. Lett. 25, 2054–2057 (2013).
    [Crossref]
  20. K.-i. Kitayama and N.-P. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55, 163–169 (2017).
    [Crossref]
  21. J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
    [Crossref]
  22. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
    [Crossref]
  23. J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
    [Crossref] [PubMed]
  24. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
    [Crossref]
  25. A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
    [Crossref]
  26. D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
    [Crossref]
  27. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).
  28. X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).
  29. L. Gan, L. Shen, M. Tang, C. Xing, Y. Li, C. Ke, W. Tong, B. Li, S. Fu, and D. Liu, “Investigation of channel model for weakly coupled multicore fiber,” Opt. Express 26, 5182 (2017).
    [Crossref]
  30. A. V. T. Cartaxo and T. M. F. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Light. Technol.  35, 2398–2408 (2017).
  31. X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

L. Gan, L. Shen, M. Tang, C. Xing, Y. Li, C. Ke, W. Tong, B. Li, S. Fu, and D. Liu, “Investigation of channel model for weakly coupled multicore fiber,” Opt. Express 26, 5182 (2017).
[Crossref]

A. V. T. Cartaxo and T. M. F. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Light. Technol.  35, 2398–2408 (2017).

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

K.-i. Kitayama and N.-P. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55, 163–169 (2017).
[Crossref]

2016 (3)

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

2014 (3)

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8, 345 (2014).
[Crossref]

2013 (4)

S. Ö. Arık and J. M. Kahn,“Coupled-core multi-core fibers for spatial multiplexing,” IEEE Photonics Technol. Lett. 25, 2054–2057 (2013).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2, 441–454 (2013).
[Crossref]

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
[Crossref]

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

2012 (1)

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

2011 (2)

2010 (2)

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

2009 (2)

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

2005 (4)

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
[Crossref]

2001 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

2000 (1)

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

1997 (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

Alves, T. M. F.

A. V. T. Cartaxo and T. M. F. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Light. Technol.  35, 2398–2408 (2017).

Arik, S. Ö.

S. Ö. Arık and J. M. Kahn,“Coupled-core multi-core fibers for spatial multiplexing,” IEEE Photonics Technol. Lett. 25, 2054–2057 (2013).
[Crossref]

Awaji, Y.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Bennet, C. H.

C. H. Bennet, “Quantum cryptography : Public key distribution and coin tossing,” in Proc. Of IEEE International Conference on Computers, Systems, and Signal processing, (1984), pp. 175–179.

Cartaxo, A. V. T.

A. V. T. Cartaxo and T. M. F. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Light. Technol.  35, 2398–2408 (2017).

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Chen, Q.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
[Crossref] [PubMed]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Chen, T.-Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
[Crossref] [PubMed]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Chien, H.-C.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Choi, I.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[Crossref]

Dallmann, N.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Dardy, H.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Diamantopoulos, N.-P.

K.-i. Kitayama and N.-P. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55, 163–169 (2017).
[Crossref]

Dixon, A. R.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Dong, Z.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Dynes, J.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Dynes, J. F.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Essiambre, R.-J.

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
[Crossref]

Foschini, G. J.

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Fröhlich, B.

Fu, S.

Gan, L.

Gisin, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

Goebel, B.

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Gunkel, M.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Hayashi, T.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. express 19, 16576–16592 (2011).
[Crossref] [PubMed]

Hiskett, P.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Hu, J.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Huang, M.-F.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Huang, Y.-K.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Hughes, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Huo, D.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Ip, E.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Jia, Z.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Kahn, J. M.

S. Ö. Arık and J. M. Kahn,“Coupled-core multi-core fibers for spatial multiplexing,” IEEE Photonics Technol. Lett. 25, 2054–2057 (2013).
[Crossref]

Ke, C.

Khurgin, J. B.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Kindness, S.

Kitayama, K.-i.

K.-i. Kitayama and N.-P. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55, 163–169 (2017).
[Crossref]

Klaus, W.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Kobayashi, T.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

Kokubun, Y.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Kramer, G.

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Legré, M.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Li, B.

Li, X.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Li, Y.

Liu, D.

Lo, H. K.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

Lucamarini, M.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Luís, R. S.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Ma, X.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

Mao, Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
[Crossref] [PubMed]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2, 441–454 (2013).
[Crossref]

Mayer, H.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

McCabe, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

McCabe, K. P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

McNown, S. R.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Mendinueta, J. M. D.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Mercer, L.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Miyamoto, Y.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

Nakanishi, T.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
[Crossref]

Nie, J.

Nordholt, J. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Nweke, N. I.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Pan, J.-W.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
[Crossref] [PubMed]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Patel, K.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Patel, K. A.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Penty, R.

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Penty, R. V.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Peters, N. A.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Peterson, C. G.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Plews, A.

Preskill, J.

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Puttnam, B. J.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Qi, B.

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

Qian, D.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
[Crossref]

Rosenberg, D.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

Runser, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2, 441–454 (2013).
[Crossref]

Sakaguchi, J.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Sano, A.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

Sasaki, T.

Sasaoka, E.

Schippel, A.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Shao, Y.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Sharpe, A.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Sharpe, A. W.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Shen, L.

Shields, A.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Shields, A. J.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Shimakawa, O.

Shor, P. W.

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Subacius, D.

D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
[Crossref]

Sun, W.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Takahata, T.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Takara, H.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

Tam, S.-B.

Tang, M.

Taru, T.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Tong, W.

Townsend, P. D.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[Crossref]

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

Trifonov, A.

D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
[Crossref]

Tyagi, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

Tyagi, K. T.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

Wada, N.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Wagner, P.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Walenta, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Wang, B.-X.

Wang, G.

Wang, H.

Wang, L.-J.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Wang, R.

Wang, T.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Wang, X. B.

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Watanabe, T.

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

Winzer, P. J.

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8, 345 (2014).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Xing, C.

Yin, H.-L.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Young, R. J.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[Crossref]

Yu, J.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

Yuan, Z.

J. Dynes, S. Kindness, S.-B. Tam, A. Plews, A. Sharpe, M. Lucamarini, B. Fröhlich, Z. Yuan, R. V. Penty, and A. Shields, “Quantum key distribution over multicore fiber,” Opt. express 24, 8081–8087 (2016).
[Crossref] [PubMed]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

Yuan, Z. L.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Zavriyev, A.

D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
[Crossref]

Zbinden, H.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

Zhang, F.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Zhang, J.

Zhang, Q.

Zhao, C.

Zhao, Y.

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010–6020 (2018).
[Crossref] [PubMed]

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

Zhou, F.

Zhu, Y.-X.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Zou, K.-H.

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Appl. Phys. Lett. (3)

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87, 174103 (2005).
[Crossref]

K. Patel, J. Dynes, M. Lucamarini, I. Choi, A. Sharpe, Z. Yuan, R. Penty, and A. Shields, “Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
[Crossref]

D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005).
[Crossref]

Electron. Lett. (1)

P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997).
[Crossref]

IEEE Commun. Mag. (1)

K.-i. Kitayama and N.-P. Diamantopoulos, “Few-mode optical fibers: Original motivation and recent progress,” IEEE Commun. Mag. 55, 163–169 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Ö. Arık and J. M. Kahn,“Coupled-core multi-core fibers for spatial multiplexing,” IEEE Photonics Technol. Lett. 25, 2054–2057 (2013).
[Crossref]

J. Light. Technol (1)

A. V. T. Cartaxo and T. M. F. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Light. Technol.  35, 2398–2408 (2017).

J. Light. Technol. (5)

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Light. Technol. 32, 2771–2779 (2014).
[Crossref]

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core × 3 mode) heterogeneous few-mode multicore fiber,” J. Light. Technol. 34, 93–103 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 g pdm-csrz-qpsk and pdm-16 qam with a se of 4 b/s/hz,” J. Light. Technol. 31, 515–522 (2013).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Light. Technol. 28, 662–701 (2010).
[Crossref]

Nanophotonics (1)

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2, 441–454 (2013).
[Crossref]

Nat. Photonics (2)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354 (2013).
[Crossref]

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8, 345 (2014).
[Crossref]

New J. Phys. (4)

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Phys. Rev. A 95, 012301 (2017).
[Crossref]

Phys. Rev. Lett. (3)

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. Lett. 72, 1–127 (2005).

X. B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Phys. Rev. X (1)

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 773–777 (2012).

Rev.mod.phys (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev.mod.phys 74, 145–195 (2001).

Other (2)

C. H. Bennet, “Quantum cryptography : Public key distribution and coin tossing,” in Proc. Of IEEE International Conference on Computers, Systems, and Signal processing, (1984), pp. 175–179.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-tb/s (370× 294-gb/s) pdm-128qam-ofdm transmission over 3× 55-km ssmf using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011), p. PDPB5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) MCF-based WSDM QKD system architecture. Cla Tr represents the classical tranceiver. (b) Cross-section of the seven-core fiber. (c) Quantum-classical interleave scheme.
Fig. 2
Fig. 2 (a) Co-propagation. (b) Counter-propagation. By sending classical signals through the MFC along either the same direction of QKD signals (co-propagation) or the opposite direction (counter-propagation), photons are recorded by the SPD. However, no QKD signal is transmitted during this process in order to measure the noise.
Fig. 3
Fig. 3 The blue lines with solid circles or triangles show the PCRs of co-propagation or counter-propagation, respectively, when classical signals are injected into core-1, -2, and -4 simultaneously. The green lines with solid circles or triangles represent the PCRs of co-propagation or counter-propagation when classical signals are only injected into core-1.
Fig. 4
Fig. 4 Classical signals are injected into core-1, -2, and -4 simultaneously in these measurement. For the red line, the frequencies of four classical signals are 192.35, 192.45, 192.55 and 192.65 THz, respectively. The SPD is connected tothe channel-25 of the ITU DWDM grid (192.5 THz). For the black line, the frequencies of four classical signals are 194.35, 194.45, 194.55 and 194.65 THz and the SPD is connected to the channel-45 (194.5 THz).
Fig. 5
Fig. 5 The center frequency of the filter is 193.5 THz with the passband of 0.6 nm. The insertion loss of the filter is measured to be 2.1 dB. Classical signals are injected into core-1, -2, and -4 simultaneously in these measurement.
Fig. 6
Fig. 6 The attenuation of MCF was set to be 0.23 dB/km.
Fig. 7
Fig. 7 (a) Co-propagation. (b) Counter-propagation. The DWDM module is integrated in the system with the psaaband of 0.8 nm and the isolation of more than 45 dB. The variable optical attenuator (VOA) is used to simulate the attenuation of longer MCF.
Fig. 8
Fig. 8 The error bars represent standard deviation at each point. Blue crosses with error bars: SKR of counter-propagation, red crosses with error bars: SKR of co-propagation, blue circles with error bars: QBER of counter-propagation, red circles with error bars: QBER of co-propagation.
Fig. 9
Fig. 9 The blue line plots the SKR over a 24 hour period and the green line shows the corresponding QBER.
Fig. 10
Fig. 10 The red symbols represent the SKR and QBER of counter-propagation for 1, 10, 20, 30 km. The blue symbols show the SKR and QBER without IC-XT which means only VOA is used to simulating the attenuation and no classical signal is transmitted.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f c ( n ) = f 0 + ( n 1 ) f .
f q ( k ) = f 0 + ( k 1 2 ) f ,
P I C X T c o = P C * K * L ,
P I C X T c o u n t e r = P C * S * α R 2 α * h * [ 1 exp ( 2 L α ) α 2 L * exp ( 2 L α ) ] ,
P C R l ¯ = 1 K l t = 1 K l P C R l ( t ) 10 P l ( t ) / 10 ,