Abstract

Enhanced photonic microwave generation by using a filtered optical feedback in an optically injected semiconductor laser operating at period-one (P1) dynamics is numerically demonstrated. In the simulation, the frequency tunability of the generated narrow-linewidth photonic microwave with the filtered optical feedback has been investigated. The results show that the frequency of the narrow-linewidth photonic microwave can be widely tuned by adjusting the injection parameters only or adjusting both the injection parameters and the center frequency of the filter. Moreover, the influence of the delay time, feedback strength, filter bandwidth and detuning on the linewidth, side-peak suppression and phase noise of the generated microwave have also been investigated in detail. The results show that with increasing feedback strength or delay time, evident reduction of the linewidth is observed. The side-peak suppression also increases with increasing feedback strength; however, side-peak suppression decreases with increasing feedback delay time. In addition, the linewidth reduction and side-peak suppression are relatively robust to the filter detuning, especially for higher feedback strengths and microwave frequencies. This is mainly attributed to the self-adaptive shifting of the red-shifted cavity resonance frequency to the center frequency of the filter in the FOF configuration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-linewidth single-frequency photonic microwave generation in optically injected semiconductor lasers with filtered optical feedback

Chenpeng Xue, Songkun Ji, Anbang Wang, Ning Jiang, Kun Qiu, and Yanhua Hong
Opt. Lett. 43(17) 4184-4187 (2018)

Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback

Jia-Gui Wu, Guang-Qiong Xia, and Zheng-Mao Wu
Opt. Express 17(22) 20124-20133 (2009)

Phase noise characteristics of microwave signals generated by semiconductor laser dynamics

Jun-Ping Zhuang and Sze-Chun Chan
Opt. Express 23(3) 2777-2797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag. 10(4), 82–95 (2009).
    [Crossref]
  2. N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility,” J. Lightwave Technol. 27(12), 1957–1967 (2009).
    [Crossref]
  3. D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
    [Crossref]
  4. Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
    [Crossref]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  6. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
    [Crossref]
  7. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
    [Crossref]
  8. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [Crossref] [PubMed]
  9. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  10. B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
    [Crossref]
  11. H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
    [Crossref]
  12. P.-T. Shih, C.-T. Lin, W.-J. Jiang, J. J. Chen, P.-C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17(22), 19749–19756 (2009).
    [Crossref] [PubMed]
  13. O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5(11), 1264–1267 (1993).
    [Crossref]
  14. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
    [Crossref]
  15. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
    [Crossref]
  16. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  17. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  18. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
    [Crossref]
  19. Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  20. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
    [Crossref] [PubMed]
  21. H. Lin, S. Ourari, T. Huang, A. Jha, A. Briggs, and N. Bigagli, “Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection,” J. Opt. Soc. Am. B 34(11), 2381–2389 (2017).
    [Crossref]
  22. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
    [Crossref] [PubMed]
  23. L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
    [Crossref] [PubMed]
  24. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36(2-3), 293–341 (2012).
    [Crossref]
  25. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]
  26. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
    [Crossref]
  27. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
    [Crossref]
  28. C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
    [Crossref] [PubMed]
  29. S. Ji, Y. Hong, P. S. Spencer, J. Benedikt, and I. Davies, “Broad tunable photonic microwave generation based on period-one dynamics of optical injection vertical-cavity surface-emitting lasers,” Opt. Express 25(17), 19863–19871 (2017).
    [Crossref] [PubMed]
  30. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
    [Crossref]
  31. D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
    [Crossref]
  32. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  33. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  34. J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
    [Crossref] [PubMed]
  35. A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
    [Crossref]
  36. C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
    [Crossref]
  37. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  38. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  39. S. Ji, C. Xue, A. Valle, P. S. Spencer, H. Li, and Y. Hong, “Stabilization of photonic microwave generation in vertical-cavity surface-emitting lasers with optical injection and feedback,” J. Lightwave Technol. 36(19), 4347–4353 (2018).
    [Crossref]
  40. C. Xue, S. Ji, A. Wang, N. Jiang, K. Qiu, and Y. Hong, “Narrow-linewidth single-frequency photonic microwave generation in optically injected semiconductor lasers with filtered optical feedback,” Opt. Lett. 43(17), 4184–4187 (2018).
    [Crossref] [PubMed]
  41. A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
    [Crossref]
  42. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  43. M. Yousefi and D. Lenstra, “Dynamical behavior of a semiconductor laser with filtered external optical feedback,” IEEE J. Quantum Electron. 35(6), 970–976 (1999).
    [Crossref]
  44. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
    [Crossref]
  45. K. H. Lo, S. K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
    [Crossref] [PubMed]
  46. F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
    [Crossref]

2018 (2)

2017 (3)

2016 (3)

2015 (2)

2014 (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

2013 (4)

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

2012 (4)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
[Crossref] [PubMed]

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
[Crossref]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36(2-3), 293–341 (2012).
[Crossref]

2011 (1)

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

2010 (3)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (3)

2007 (2)

2004 (4)

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

2000 (1)

1999 (3)

M. Yousefi and D. Lenstra, “Dynamical behavior of a semiconductor laser with filtered external optical feedback,” IEEE J. Quantum Electron. 35(6), 970–976 (1999).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

1993 (1)

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5(11), 1264–1267 (1993).
[Crossref]

1977 (1)

C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
[Crossref]

1973 (1)

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Benedikt, J.

Bigagli, N.

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Briggs, A.

Cantu, H. I.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Carter, M. W.

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

Chan, S. C.

Chang-Hasnain, C.

Chen, J.

Chen, J. J.

Chi, H.

Chi, S.

Clark, T. R.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

Cui, C.

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

Davies, I.

Dennis, M. L.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

Donati, S.

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Fan, L.

Figueiredo, J. M. L.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Fischer, A. P. A.

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

Gamage, P. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

Grillot, F.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

Grodensky, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
[Crossref]

Guo, Q.

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Hong, Y.

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Huang, T.

Hung, Y. H.

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Huyet, G.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Hwang, S. K.

K. H. Lo, S. K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36(2-3), 293–341 (2012).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

Ironside, C. N.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Ivanov, L. P.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Javaloyes, J.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Jha, A.

Ji, S.

Jiang, N.

Jiang, W.-J.

Kefelian, F.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Kelly, A. E.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

Kravitz, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
[Crossref]

Lau, E. K.

Lau, K. Y.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5(11), 1264–1267 (1993).
[Crossref]

Lenstra, D.

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

M. Yousefi and D. Lenstra, “Dynamical behavior of a semiconductor laser with filtered external optical feedback,” IEEE J. Quantum Electron. 35(6), 970–976 (1999).
[Crossref]

Lester, L. F.

C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

Li, H.

Li, Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

Liang, Q.

Lim, C.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

Lin, C. Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

Lin, C.-T.

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Lin, H.

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Lo, K. H.

Logginov, A. S.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Manko, M. A.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

McInerney, J. G.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Naderi, N. A.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

Nanzer, J. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

Nirmalathas, A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

Novak, D.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18(10), 1355–1363 (2000).
[Crossref]

O’Donoghue, S.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Ourari, S.

Pan, S.

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Parekh, D.

Peng, P.-C.

Pleros, N.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

Qiu, K.

Quirce, A.

Raghunathan, R.

Romeira, B.

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

Salathe, R.

C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
[Crossref]

Schires, K.

Senatorov, K. Ya.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Shih, P.-T.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Solgaard, O.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5(11), 1264–1267 (1993).
[Crossref]

Spencer, P. S.

Sung, H. K.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Tang, X.

Todaro, M. T.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Tsagkaris, K.

Tselikas, N. D.

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Valle, A.

Vemuri, G.

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

Voumard, C.

C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
[Crossref]

Vyrsokinos, K.

Wang, A.

Wang, C.

Wang, Z.

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Waterhouse, R.

Waterhouse, R. B.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

Weber, H.

C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
[Crossref]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Wu, M. C.

Wu, Z.

Xia, G.

Xue, C.

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Yoffe, G.

Yousefi, M.

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

M. Yousefi and D. Lenstra, “Dynamical behavior of a semiconductor laser with filtered external optical feedback,” IEEE J. Quantum Electron. 35(6), 970–976 (1999).
[Crossref]

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Zadok, A.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
[Crossref]

Zhang, F.

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Zhao, X.

Zhou, P.

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Zhuang, J. P.

Appl. Phys. (Berl.) (1)

C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. (Berl.) 12(4), 369–378 (1977).
[Crossref]

Appl. Phys. Lett. (1)

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010).
[Crossref]

IEEE J. Quantum Electron. (6)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

B. Romeira, J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly, “Delayed feedback dy-namics of Lienard-type resonant tunneling-photo-detector optoelectronic oscillators,” IEEE J. Quantum Electron. 49(1), 31–42 (2013).
[Crossref]

C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1 (2016).
[Crossref]

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

M. Yousefi and D. Lenstra, “Dynamical behavior of a semiconductor laser with filtered external optical feedback,” IEEE J. Quantum Electron. 35(6), 970–976 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

A. P. A. Fischer, M. Yousefi, D. Lenstra, M. W. Carter, and G. Vemuri, “Experimental and theoretical study of semiconductor laser dynamics due to filtered optical feedback,” IEEE J. Sel. Top. Quantum Electron. 10(5), 944–954 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

IEEE Microw. Mag. (1)

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag. 10(4), 82–95 (2009).
[Crossref]

IEEE Photonics J. (2)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 5900107 (2013).
[Crossref]

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (6)

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photonics Technol. Lett. 5(11), 1264–1267 (1993).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photonics Technol. Lett. 22(11), 763–765 (2010).
[Crossref]

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (9)

P.-T. Shih, C.-T. Lin, W.-J. Jiang, J. J. Chen, P.-C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17(22), 19749–19756 (2009).
[Crossref] [PubMed]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
[Crossref] [PubMed]

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
[Crossref] [PubMed]

S. Ji, Y. Hong, P. S. Spencer, J. Benedikt, and I. Davies, “Broad tunable photonic microwave generation based on period-one dynamics of optical injection vertical-cavity surface-emitting lasers,” Opt. Express 25(17), 19863–19871 (2017).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
[Crossref] [PubMed]

K. H. Lo, S. K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36(2-3), 293–341 (2012).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Other (1)

Q. Guo, F. Zhang, Z. Wang, P. Zhou, and S. Pan, “High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar,” in 2017 International Topical Meeting on Microwave Photonics (MWP). (2017), pp. 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Schematic diagram for P1 microwave generation in a semiconductor laser with optical injection and FOF. OI: optical isolator, OC: optical coupler, Cir: circulator, BF: band-pass filter, PC: polarization controller, Att: attenuator, ML: master laser, SL: slave laser, PD: photodetector.
Fig. 2
Fig. 2 Optical spectra and RF spectra of the SL operating at P1 dynamic subject to injection only (the first and second columns), and injection and FOF (the third and fourth columns). The injection parameters (fi, ξ) = (a) (7 GHz, 0.12), (b) (15 GHz, 0.17), (c) (55.5 GHz, 0.48). The filter detuning in the FOF is set as υ = (a) −11 GHz, (b) −9 GHz, (c) −4.5GHz. η = 0.012. The RSCRF fRS is labeled in the optical spectra.
Fig. 3
Fig. 3 RSCRF and microwave frequency (dashed curve) of the SL with injection only as a function of the injection strength and frequency detuning.
Fig. 4
Fig. 4 Optical spectra and RF spectra of the SL operating at P1 dynamic with optical injection and FOF. (a) (fi, ξ) = (7.5 GHz, 0.1), (b) (23GHz, 0.265), and. (b) (31GHz, 0.365). The parameters of FOF are set as (υ, Λ, η, τ) = (−9 GHz, 160 MHz, 0.020, 2.4 ns). The RSCRF fRS is labeled at the optical spectra.
Fig. 5
Fig. 5 Bifurcations of the optically injected SL subject to (a) FOF, (b) SOF and (c) DOF without the noise. The parameters (fi, ξ, τ, τ1, τ2) are set as (23 GHz, 0.265, 2.4 ns, 2.4 ns, 3 ns).
Fig. 6
Fig. 6 RF spectra of the SL with FOF. The feedback strength η = (a) 0.005; (b) 0.020; (c) 0.035 and (d) 0.050. The insets are the enlarged of the fundamental frequency with a frequency span of 6 MHz.
Fig. 7
Fig. 7 Linewidth (the first row) and SPSC (the second row) as a function of the feedback strength. The (fi, ξ) are set as (a) (7.5GHz, 0.1), (b) (15 GHz, 0.17), (c) (31 GHz, 0.365).
Fig. 8
Fig. 8 Map of the dynamics of the SL versus the injection strength and feedback strength. fi = 15 GHz and τ = 5 ns.
Fig. 9
Fig. 9 Phase variance versus the feedback strength. (fi, ξ) = (15 GHz, 0.17), τ = 2.4 ns. Inset (a) linewidth verse the feedback strength; inset (b) SPSC verse the feedback strength.
Fig. 10
Fig. 10 Linewidth (the first row) and SPSC (the second row) of the photonic microwave generated in the optically injected SL subject to FOF as a function of the filter width. The parameters (ξ, fi, η) are set as (a) (0.1, 7.5GHz, 0.025), (b) (0.17, 15 GHz, 0.035), (c) (0.365, 31 GHz, 0.04).
Fig. 11
Fig. 11 Dynamics of the SL with FOF as a function of the feedback strength and filter width. The parameters (ξ, fi) are set to (0.17, 15 GHz).
Fig. 12
Fig. 12 Phase variance versus the filter bandwidth. (fi, ξ) = (15 GHz, 0.17), τ = 2.4 ns and η = 0.035.
Fig. 13
Fig. 13 Linewidth (top row), RSCRF (second row), microwave frequency (third row) and SPSC (bottom row) as a function of the filter detuning. The parameters (ξ, fi, η) are set as (a) (0.1, 7.5GHz, 0.025), (b) (0.17, 15 GHz, 0.035), (c) (0.365, 31 GHz, 0.04).
Fig. 14
Fig. 14 Maps of (a) microwave frequency and (b) SPSC as a function of the feedback strength and filter detuning, (ξ, fi) = (0.17, 15 GHz).
Fig. 15
Fig. 15 Phase variance versus the filter detuning. (fi, ξ) = (15 GHz, 0.17), τ = 2.4 ns and η = 0.035.
Fig. 16
Fig. 16 RF spectra of the SL subject to injection and FOF with a feedback delay time of (a) 2 ns, (b) 4 ns, (c) 8ns and (d) 16 ns.
Fig. 17
Fig. 17 Linewidth (the first row), SPSC (the second row) and microwave frequency (the third row) of the SL with optical injection and FOF, as a function of the feedback delay time. The parameters (ξ, fi, η) are set as (a) (0.1, 7.5GHz, 0.025), (b) (0.17, 15 GHz, 0.035), (c) (0.365, 31 GHz, 0.04).
Fig. 18
Fig. 18 Map of SPSC as a function of the filter bandwidth and feedback delay time. (ξ, fi, η) = (0.17, 15 GHz, 0.035).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

da dt = 1ib 2 [ γ c γ n γ s J n γ p (|a | 2 1)]a+ξ γ c e i2π f i t +η γ c F+χ
dn dt =( γ s + γ n |a | 2 )n γ s J(1 γ p γ c |a | 2 )(|a | 2 1)
dF dt =Λa(tτ) e i f 0 τ +(iυΛ)F
χ(t) χ * (t') = R sp δ(tt')
χ(t)χ(t') =0
χ(t) =0
F={ a(tτ) e iωτ ,forSOF [a(t τ 1 ) e iω τ 1 +a(t τ 2 ) e (iω τ 2 ) ]/2,forDOF