Abstract

Precision glass molding technology is one of the most important approaches to produce optical glass lenses. However, the high fidelity and repeatability of optical performance be sometimes achieved even though the lenses meet the requirements of geometric assessments. The surface errorform errors transferred from mold surface with a complicated combination of components of different spatial-frequencies greatly influence the optical lenses performance. An optical model is built to investigate the impact of form errors with various frequencies on the optical performance of the lens. The mid-spatial frequency error is proved to be the factor that results in the most serious surrounding circle phenomenon. Based on the diffraction theory of the sinusoidal grating, numerical calculation is carried out to analyze their relationship. Experiments are conducted to validate the analysis and a mold polishing procedure is provided as a method to improve the quality of lenses according to performance evaluation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array

Jiaqing Xie, Tianfeng Zhou, Benshuai Ruan, Yifei Du, and Xibin Wang
Appl. Opt. 56(23) 6622-6630 (2017)

Surface defect analysis on formed chalcogenide glass Ge22Se58As20 lenses after the molding process

Tianfeng Zhou, Qin Zhou, Jiaqing Xie, Xiaohua Liu, Xibin Wang, and Haihui Ruan
Appl. Opt. 56(30) 8394-8402 (2017)

Fabrication of molded chalcogenide-glass lens for thermal imaging applications

Du Hwan Cha, Hye-Jeong Kim, Yeon Hwang, Jae Cheol Jeong, and Jeong-Ho Kim
Appl. Opt. 51(23) 5649-5656 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
    [Crossref]
  2. W. Liu and L. Zhang, “Thermoforming mechanism of precision glass moulding,” Appl. Opt. 54(22), 6841–6849 (2015).
    [Crossref] [PubMed]
  3. T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
    [Crossref]
  4. S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
    [Crossref]
  5. F. Klocke, A. Gruentzig, D. Hollstegge, C. Voelker, O. Dambon, M. Herben, B. Bulla, D. Czarlay, and J. Riegel, “Polishing-grinding–an innovation for manufacturing of high precision optics,” in Annual meeting of ASPE 06, 2648 (2008).
  6. E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).
  7. C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).
  8. Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).
  9. F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
    [Crossref]
  10. B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
    [Crossref]
  11. B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).
  12. W. Liu and L. Zhang, “Numerical optimization platform for precision glass molding by the simplex algorithm,” Appl. Opt. 56(12), 3245–3250 (2017).
    [Crossref] [PubMed]
  13. L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).
    [Crossref] [PubMed]
  14. F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).
  15. R. N. Youngworth and B. D. Stone, “Simple estimates for the effects of mid-spatial-frequency surface errors on image quality,” Appl. Opt. 39(13), 2198–2209 (2000).
    [Crossref] [PubMed]
  16. Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
    [Crossref]
  17. Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).
  18. G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
    [Crossref]
  19. F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
    [Crossref]
  20. J. M. Tamkin and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Opt. 49(33), 6522–6536 (2010).
    [Crossref] [PubMed]
  21. X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
    [Crossref]
  22. C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
    [Crossref]

2018 (2)

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).
[Crossref] [PubMed]

2017 (4)

W. Liu and L. Zhang, “Numerical optimization platform for precision glass molding by the simplex algorithm,” Appl. Opt. 56(12), 3245–3250 (2017).
[Crossref] [PubMed]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

2016 (1)

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
[Crossref]

2015 (1)

2014 (2)

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

2013 (2)

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
[Crossref]

2010 (2)

J. M. Tamkin and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Opt. 49(33), 6522–6536 (2010).
[Crossref] [PubMed]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

2009 (1)

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

2008 (3)

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
[Crossref]

2005 (1)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

2000 (1)

Aurich, J. C.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Bi, G.

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
[Crossref]

Brecher, C.

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Brinksmeier, E.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Charlton, P

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Chen, F. J.

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Chen, Y.

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

Cheung, C. F.

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Dambon, O.

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Davies, A. D.

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
[Crossref]

Evans, C. J.

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
[Crossref]

Fang, F. Z.

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Gao, C. H.

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Garbusi, E.

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
[Crossref]

Gong, H.

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Guo, Y. B.

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
[Crossref]

He, P.

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

Ho, L. T.

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Hosseinimakarem, Z.

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
[Crossref]

Huang, J. M.

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Huang, K. T.

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Jain, A.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

Jia, H. P.

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Klocke, F.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Kong, L. B.

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Lee, W. B.

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Li, M. J.

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Li, Z. J.

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Liang, Z. Q.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Lin, Y. X.

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Liu, W.

Liu, X. H.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Liu, X. X.

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

Liu, Y.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Milster, T. D.

Mutlugunes, Y.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Ohmori, H.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Osten, W.

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
[Crossref]

Pongs, G.

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Pruss, C.

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
[Crossref]

Ren, Z. Y.

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Shen, L. G.

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Shore, P.

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Stone, B. D.

Su, L. J.

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

Tamkin, J. M.

Tao, B.

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Wang, F.

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Wang, X. B.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Winterschladen, M.

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Xiao, W. J.

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Xie, J. Q.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Yang, F.

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
[Crossref]

Yi, A.

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Yi, A. Y.

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).
[Crossref] [PubMed]

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

Yin, S. H.

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Youngworth, R. N.

Zeng, Z.

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

Zhang, G. H.

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Zhang, L.

Zhang, X. D.

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

Zhou, J.

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Zhou, T. F.

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

Zhou, W.

Zhu, K. J.

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Appl. Opt. (5)

CIRP Annals. (1)

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Front. Mech. Eng. (2)

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).
[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).
[Crossref]

J. Manuf. Sci. Eng.- Trans. ASME (3)

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

J. Mech. Eng. (1)

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).
[Crossref]

Journal of Vibration, Measurement and Diagnosis (1)

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

Opt. Lasers Eng. (1)

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Opt. Photonics J. (1)

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).
[Crossref]

Opt. Photonics News (1)

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).
[Crossref]

Proc. Inst. Mech. Eng., B J. Eng. Manuf. (1)

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).
[Crossref]

Proc. SPIE (1)

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).
[Crossref]

Other (2)

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

F. Klocke, A. Gruentzig, D. Hollstegge, C. Voelker, O. Dambon, M. Herben, B. Bulla, D. Czarlay, and J. Riegel, “Polishing-grinding–an innovation for manufacturing of high precision optics,” in Annual meeting of ASPE 06, 2648 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The integrated manufacture and evaluation system of glass lenses made by PGM.
Fig. 2
Fig. 2 Form errors and light spots of two lenses. (a) Form errors. (b) Accepted light spot of lens 1. (c) Rejected light spot of lens 2 and typical optical defects.
Fig. 3
Fig. 3 3-D perspective diagram of the simulation model and simulation results (λ = 635 nm). (a) 3-D diagram of the model. (b) Simulation results of light spots of lens 1 and (c) lens 2.
Fig. 4
Fig. 4 Abnormal light spot caused by X axis directional optical eccentricity. (a) Simulation result. (b) Experimental result.
Fig. 5
Fig. 5 Simulation spot of standard aspheric lens and form error components after filtering of two sample lenses (λ = 635 nm). (a) Standard light spot out of the aperture and (b) on the detect screen. (c) High-spatial frequency error of lens 1.(d) Mid-spatial frequency error of lens 1. (e) Low-spatial frequency error of lens 1. (f) High-spatial frequency error of lens 2. (g) Mid-spatial frequency error of lens 2. (h) Low-spatial frequency error of lens 2.
Fig. 6
Fig. 6 Simulation results of standard lens combined with different components of form error. (a) Light spot with high-spatial frequency error. (b) Light spot with mid-spatial frequency error. (c) Light spot with low-spatial frequency error.
Fig. 7
Fig. 7 Light spots and energy distribution of lenses with mid-spatial frequency form errors of different period lengths. (a) Period length is 0.25 mm. (b) Period length is 0.5 mm. (c)Period length is 1 mm.
Fig. 8
Fig. 8 Light spots and energy distribution of lenses with mid-spatial frequency form errors of different amplitude. (a) Amplitude is 10 nm. (b) Amplitude is 15 nm. (c) Amplitude is 40 nm.
Fig. 9
Fig. 9 Light spots and energy distribution of lenses with mid-spatial frequency form errors of different initial phase. (a) Initial phase is 0. (b) Initial phase is π/2.
Fig. 10
Fig. 10 Diagram of the diffraction process and numerical calculation results of the surrounding circle. (a) Diagram of the diffraction process. (b) Continuous mid-spatial frequency error (φ0 = 0). (c) Discontinuous mid-spatial frequency error (φ0 = π/2). (d) Position and intensity distribution of the surrounding circles.
Fig. 11
Fig. 11 Diagram of optical design and PGM machine. (a) Optical design. (b) PGM machine.
Fig. 12
Fig. 12 Optical performance evaluation device
Fig. 13
Fig. 13 Optical performance, geometric measurement results and spectral distribution of mid-spatial frequency error of the lenses before and after polishing. (a) Lens made by mold before polishing. (b) lens made by mold after polishing.

Tables (2)

Tables Icon

Table 1 Numerical data of the simulation results.

Tables Icon

Table 2 Coefficients of the designed aspheric surface

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

z error =Acos( 2πx d + φ 0 ),
t( x 1 )=1+Acos( 2π x 1 d + φ 0 )
E ˜ ( x 1 )=t( x 1 )={ 1+Acos(2π u 0 x 1 ) | x 1 | Nd 2 0 | x 1 |> Nd 2
E ˜ ( x 1 )= [1+Acos(2π u 0 x 1 )] rect( x 1 Nd )exp(i2πu x 1 )d x 1 .
u= x λL = sinθ λ ,
E ˜ (u)=Nd[sincNdu+ A 2 sincNd(u u 0 )+ A 2 sincNd(u+ u 0 )].
I= N 2 { ( sin( πNd λ sinθ) πNd λ sinθ ) 2 + A 2 4 [ sin( πNd λ (sinθ λ d ) πNd λ (sinθ λ d ) ] 2 + A 2 4 [ sin( πNd λ (sinθ+ λ d ) πNd λ (sinθ+ λ d ) ] 2 }.
sinθ=0, λ d
E ˜ ( x 2 )={ 1+Asin(2π u 0 x 2 ) 0 x 2 Nd 2 1Asin(2π u 0 x 2 ) 0 x 2 Nd 2 0 | x 2 |> Nd 2 .
E ˜ (u)=Nd[sincNdu+ A 2 sinc Nd(u u 0 ) 2 sin Nd(u u 0 ) 2 + A 2 sinc Nd(u u 0 ) 2 sin Nd(u u 0 ) 2 ].
I= N 2 { ( sin( πNd λ sinθ) πNd λ sinθ ) 2 + A 2 4 [ sin 2 ( πNd 2λ (sinθ λ d ) πNd 2λ (sinθ λ d ) ] 2 + A 2 4 [ sin 2 ( πNd 2λ (sinθ+ λ d ) πNd 2λ (sinθ+ λ d ) ] 2 }.
E ˜ (x)=C+ A 1 cos( 2π x 1 d 1 + φ 1 )+ A 2 cos( 2π x 2 d 2 + φ 2 )+ A 3 cos( 2π x 3 d 3 + φ 3 )+,