X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).

[Crossref]
[PubMed]

W. Liu and L. Zhang, “Numerical optimization platform for precision glass molding by the simplex algorithm,” Appl. Opt. 56(12), 3245–3250 (2017).

[Crossref]
[PubMed]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).

[Crossref]

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).

[Crossref]

J. M. Tamkin and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Opt. 49(33), 6522–6536 (2010).

[Crossref]
[PubMed]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).

[Crossref]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).

[Crossref]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).

[Crossref]

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).

[Crossref]

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).

[Crossref]

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).

[Crossref]

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).

[Crossref]

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).

[Crossref]

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).

[Crossref]

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).

[Crossref]
[PubMed]

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).

[Crossref]
[PubMed]

W. Liu and L. Zhang, “Numerical optimization platform for precision glass molding by the simplex algorithm,” Appl. Opt. 56(12), 3245–3250 (2017).

[Crossref]
[PubMed]

W. Liu and L. Zhang, “Thermoforming mechanism of precision glass moulding,” Appl. Opt. 54(22), 6841–6849 (2015).

[Crossref]
[PubMed]

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

W. Liu and L. Zhang, “Thermoforming mechanism of precision glass moulding,” Appl. Opt. 54(22), 6841–6849 (2015).

[Crossref]
[PubMed]

W. Liu and L. Zhang, “Numerical optimization platform for precision glass molding by the simplex algorithm,” Appl. Opt. 56(12), 3245–3250 (2017).

[Crossref]
[PubMed]

L. Zhang, W. Zhou, and A. Y. Yi, “Investigation of thermoforming mechanism and optical properties’ change of chalcogenide glass in precision glass molding,” Appl. Opt. 57(22), 6358–6368 (2018).

[Crossref]
[PubMed]

R. N. Youngworth and B. D. Stone, “Simple estimates for the effects of mid-spatial-frequency surface errors on image quality,” Appl. Opt. 39(13), 2198–2209 (2000).

[Crossref]
[PubMed]

J. M. Tamkin and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Opt. 49(33), 6522–6536 (2010).

[Crossref]
[PubMed]

E. Brinksmeier, Y. Mutlugunes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals. 59(2), 652–671 (2010).

T. F. Zhou, X. H. Liu, Z. Q. Liang, Y. Liu, J. Q. Xie, and X. B. Wang, “Recent advancements in optical microstructure fabrication through glass molding process,” Front. Mech. Eng. 12(1), 46–65 (2017).

[Crossref]

S. H. Yin, H. P. Jia, G. H. Zhang, F. J. Chen, and K. J. Zhu, “Review of small aspheric glass lens molding technologies,” Front. Mech. Eng. 12(1), 66–76 (2017).

[Crossref]

X. X. Liu, X. D. Zhang, F. Z. Fang, and Z. Zeng, “Performance-controllable manufacture of optical surfaces by ultra-precision machining,” Int. J. Adv. Manuf. Technol. 94(9–12), 4289–4299 (2018).

[Crossref]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses–a combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88(3), 579–586 (2005).

[Crossref]

F. Wang, Y. Chen, F. Klocke, G. Pongs, and A. Y. Yi, “Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 131, 011014 (2009).

B. Tao, P. He, L. G. Shen, and A. Y. Yi, “Annealing of compression molded aspherical glass lenses,” J. Manuf. Sci. Eng.- Trans. ASME 136, 011008 (2014).

Y. Chen, A. Y. Yi, L. J. Su, F. Klocke, and G. Pongs, “Numerical simulation and experimental study of residual stresses in compression molding of precision glass optical components,” J. Manuf. Sci. Eng.- Trans. ASME 130, 051012 (2008).

G. Bi, Y. B. Guo, and F. Yang, “Mid-spatial frequency error identification of precision optical surface based on empirical mode decomposition,” J. Mech. Eng. 49(01), 164–170 (2013).

[Crossref]

Z. Y. Ren, Y. X. Lin, J. M. Huang, W. J. Xiao, and C. H. Gao, “Mid-spatial frequency error identification of precision optical surface based on the adaptive dt-cwt method,” Journal of Vibration, Measurement and Diagnosis 37(1), 108–114 (2017).

F. Z. Fang, K. T. Huang, H. Gong, and Z. J. Li, “Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).

[Crossref]

B. Tao, L. G. Shen, A. Yi, M. J. Li, and J. Zhou, “Reducing refractive index variations in compression molded lenses by annealing,” Opt. Photonics J. 03(02), 118–121 (2013).

[Crossref]

C. Pruss, E. Garbusi, and W. Osten, “Testing aspheres,” Opt. Photonics News 19(4), 24–29 (2008).

[Crossref]

F. Klocke, O. Dambon, G. Pongs, F. Wang, C. Brecher, and M. Winterschladen, “Finite element analysis of glass moulding,” Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(1), 101–106 (2008).

[Crossref]

Z. Hosseinimakarem, A. D. Davies, and C. J. Evans, “Zernike polynomials for mid-spatial frequency representation on optical surfaces,” Proc. SPIE 9961, 99610P (2016).

[Crossref]

C. F. Cheung, L. T. Ho, P Charlton, L. B. Kong, and W. B. Lee, “Analysis of surface generation in the ultraprecision polishing of freeform surfaces,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactur.224(1), 59–73 (2010).

F. Klocke, A. Gruentzig, D. Hollstegge, C. Voelker, O. Dambon, M. Herben, B. Bulla, D. Czarlay, and J. Riegel, “Polishing-grinding–an innovation for manufacturing of high precision optics,” in Annual meeting of ASPE 06, 2648 (2008).