Abstract

We present a theoretical investigation of how coherent control of the relative phase in coherent anti-Stokes Raman scattering (CARS) microscopy can break the diffraction limit. In quantum theory, it is found that the relative phase of the pump and Stokes pulses can be used to periodically tune the intensity of the anti-Stokes signal. Thus, by controlling the relative phase around the center of the pump and Stokes pulses, the anti-Stokes signal can be tuned to zero in this region. In turn, the useful spot-generating anti-Stokes signal is substantially suppressed to a much smaller dimension, and scanning of the spots renders CARS images with sub-diffraction resolutions. Such super-resolutions can greatly enhance the advantage of using CARS microscopy in many potential applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy

Dong Wang, Shuanglong Liu, Yue Chen, Jun Song, Wei Liu, Maozhen Xiong, Guangsheng Wang, Xiao Peng, and Junle Qu
Opt. Express 25(9) 10276-10286 (2017)

A method for super-resolved CARS microscopy with structured illumination in two dimensions

Joo Hyun Park, Sang-Won Lee, Eun Seong Lee, and Jae Yong Lee
Opt. Express 22(8) 9854-9870 (2014)

Double-clad hollow core photonic crystal fiber for coherent Raman endoscope

Sophie Brustlein, Pascal Berto, Richard Hostein, Patrick Ferrand, Cyrille Billaudeau, Didier Marguet, Alistair Muir, Jonathan Knight, and Hervé Rigneault
Opt. Express 19(13) 12562-12568 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [Crossref] [PubMed]
  2. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
    [Crossref]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  4. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
    [Crossref]
  5. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
    [Crossref]
  6. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
    [Crossref]
  7. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
    [Crossref] [PubMed]
  8. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  9. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  10. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  11. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  12. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [Crossref] [PubMed]
  13. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
    [Crossref] [PubMed]
  14. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  15. C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
    [Crossref] [PubMed]
  16. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [Crossref] [PubMed]
  17. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  18. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  19. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  20. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [Crossref] [PubMed]
  21. W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
    [Crossref]
  22. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [Crossref] [PubMed]
  23. V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
    [Crossref] [PubMed]
  24. W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
    [Crossref]
  25. W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
    [Crossref]
  26. C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
    [Crossref]
  27. C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
    [Crossref]
  28. D. Wang, S. Liu, Y. Chen, J. Song, W. Liu, M. Xiong, G. Wang, X. Peng, and J. Qu, “Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy,” Opt. Express 25(9), 10276–10286 (2017).
    [Crossref] [PubMed]
  29. L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
    [Crossref]
  30. L. Gong and H. Wang, “Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency–like scheme and its application for super-resolution microscopy,” Phys. Rev. A 92(2), 023828 (2015).
    [Crossref]
  31. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2012).
  32. M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
    [Crossref] [PubMed]
  33. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
    [Crossref]
  34. S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4825–4829 (2010).
    [Crossref] [PubMed]
  35. D. Wang and J. Liu, “Polarization property of the THz wave generated from a two-color laser-induced gas plasma,” Phys. Rev. A 86(2), 023833 (2012).
    [Crossref]
  36. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
    [Crossref] [PubMed]
  37. H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
    [Crossref] [PubMed]
  38. N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
    [Crossref] [PubMed]
  39. Z. Chu, J. Liu, K. Wang, and J. Yao, “Four-wave mixing model solutions for polarization control of terahertz pulse generated by a two-color laser field in air,” Chin. Opt. Lett. 8(7), 697–700 (2010).
    [Crossref]
  40. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [Crossref]
  41. X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
    [Crossref]
  42. R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

2015 (1)

L. Gong and H. Wang, “Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency–like scheme and its application for super-resolution microscopy,” Phys. Rev. A 92(2), 023828 (2015).
[Crossref]

2014 (1)

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

2013 (1)

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

2012 (2)

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

D. Wang and J. Liu, “Polarization property of the THz wave generated from a two-color laser-induced gas plasma,” Phys. Rev. A 86(2), 023833 (2012).
[Crossref]

2011 (2)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

2010 (7)

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4825–4829 (2010).
[Crossref] [PubMed]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Z. Chu, J. Liu, K. Wang, and J. Yao, “Four-wave mixing model solutions for polarization control of terahertz pulse generated by a two-color laser field in air,” Chin. Opt. Lett. 8(7), 697–700 (2010).
[Crossref]

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[Crossref] [PubMed]

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[Crossref] [PubMed]

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[Crossref] [PubMed]

2009 (4)

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[Crossref] [PubMed]

H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[Crossref] [PubMed]

N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[Crossref] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (2)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2004 (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2001 (2)

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref] [PubMed]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

2000 (2)

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
[Crossref]

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1998 (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

1994 (2)

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

1974 (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

1962 (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

1961 (2)

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Beams, R.

R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
[Crossref] [PubMed]

Beeker, W. P.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Belabas, N.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Boller, K. J.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Book, L. D.

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Brakenhoff, G. J.

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Brasselet, S.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Chen, Y.

Cheng, J. X.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref] [PubMed]

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Chu, Z.

Cleff, C.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Dai, J.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Lange, . A.

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

Dorrer, C.

Duboisset, J.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Fallnich, C.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Ferrand, P.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Gan, F.

X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
[Crossref]

Gao, X.

X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
[Crossref]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

Gasecka, A.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Gilman, J. W.

R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
[Crossref] [PubMed]

Gong, L.

L. Gong and H. Wang, “Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency–like scheme and its application for super-resolution microscopy,” Phys. Rev. A 92(2), 023828 (2015).
[Crossref]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Gross, P.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Groß, P.

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

Gross, P.

Hajek, K. M.

Hamaguchi, H.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hell, S. W.

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Herek, J. L.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Joffre, M.

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[Crossref] [PubMed]

N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[Crossref] [PubMed]

Kruse, K.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Lee, C. J.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Likforman, J.-P.

Lindenberg, A. M.

H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Littleton, B.

Liu, J.

D. Wang and J. Liu, “Polarization property of the THz wave generated from a two-color laser-induced gas plasma,” Phys. Rev. A 86(2), 023833 (2012).
[Crossref]

Z. Chu, J. Liu, K. Wang, and J. Yao, “Four-wave mixing model solutions for polarization control of terahertz pulse generated by a two-color laser field in air,” Chin. Opt. Lett. 8(7), 697–700 (2010).
[Crossref]

Liu, S.

Liu, W.

D. Wang, S. Liu, Y. Chen, J. Song, W. Liu, M. Xiong, G. Wang, X. Peng, and J. Qu, “Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy,” Opt. Express 25(9), 10276–10286 (2017).
[Crossref] [PubMed]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

McIntyre, T. J.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mukamel, S.

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4825–4829 (2010).
[Crossref] [PubMed]

Muller, M.

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

Müller, M.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Niu, H.

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Offerhaus, H. L.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, X.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Potma, E. O.

Qu, J.

Raghunathan, V.

Rahav, S.

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4825–4829 (2010).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rigneault, H.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Savage, C. M.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Song, J.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Squier, J.

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stranick, S. J.

R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
[Crossref] [PubMed]

Tahara, T.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[Crossref]

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Toleutaev, B. N.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Turk, D.

Volkmer, A.

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref] [PubMed]

Wang, D.

Wang, G.

Wang, H.

L. Gong and H. Wang, “Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency–like scheme and its application for super-resolution microscopy,” Phys. Rev. A 92(2), 023828 (2015).
[Crossref]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Wang, K.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wen, H.

H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[Crossref] [PubMed]

Wichmann, J.

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Woodcock, J. W.

R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
[Crossref] [PubMed]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref] [PubMed]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xiong, M.

Xu, W.

X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
[Crossref]

Yao, J.

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Zhang, X.-C.

N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Appl. Phys. B (2)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitive and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[Crossref]

Chin. Opt. Lett. (1)

J. Microsc. (2)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

M. Muller and J. Squier, C. A. De Lange and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(Pt 2), 150–158 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. Raman Spectrosc. (1)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Nat. Commun. (1)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7(1), 11562 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

X. Gao, F. Gan, and W. Xu, “Superresolution by three-zone pure phase plate with 0, π, 0 phase variation,” Opt. Laser Technol. 39(5), 1074–1080 (2007).
[Crossref]

Opt. Lett. (2)

Photonics (1)

R. Beams, J. W. Woodcock, J. W. Gilman, and S. J. Stranick, “Phase mask-based multimodal superresolution microscopy,” Photonics 4(3), 39 (2017).
[Crossref] [PubMed]

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

Phys. Rev. A (7)

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

L. Gong and H. Wang, “Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency–like scheme and its application for super-resolution microscopy,” Phys. Rev. A 92(2), 023828 (2015).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

D. Wang and J. Liu, “Polarization property of the THz wave generated from a two-color laser-induced gas plasma,” Phys. Rev. A 86(2), 023833 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[Crossref] [PubMed]

H. Wen and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[Crossref] [PubMed]

N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. U.S.A. 107(11), 4825–4829 (2010).
[Crossref] [PubMed]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Other (1)

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy, 1st ed. (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The sketch of the pair of wedge crystals (a) and the phase plate (b).
Fig. 2
Fig. 2 2-dimensional and 3-dimensional images of the three physical quantities ρ, n p / n s and λ p / λ s .
Fig. 3
Fig. 3 Sketches of the normal CARS system (a) and the super-resolution CARS system (b).
Fig. 4
Fig. 4 (a) Test sample simulating a fine structure (e.g. brain tissue). By simulating the super-resolution CARS imaging course of the test sample, the CARS images are obtained for phase plate inner diameters D i of 320nm (b), 160nm (c), 40nm (d) and 20nm (e), where the signal offset b is zero. The remaining images are for signal offsets b of 1 (f), 0.8 (g), 0.4 (h) and 0.1 (i), where the inner diameter D i is 20nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2( ω p t+ K p · r + ϕ p )( ω s t+ K s · r + ϕ s )( ω as t+ K as · r + ϕ as ) =Δωt+Δ K · r +2 ϕ p ϕ s ϕ as =2 ϕ p ϕ s ,
I as sin 2 Δϕ.
Δϕ=2 ϕ p ϕ s =2π( 2 n p Δl λ p n s Δl λ s )= 2 ω p n p ω s n s c Δl=tanθ 2 ω p n p ω s n s c Δh,
ρ= n s Δl λ s = λ p / λ s 2 n p / n s λ p / λ s .
Δτ=( n p n s ) Δl c =tanθ( n p n s ) Δh c .
I as E as 2 ρ[ sin 2 ( Δϕ )+b ] [ E p 2 ( r ) E s ( r ) ] 2 ,
I as ρ[ sin 2 ( Δϕ )+b ]exp( r 2 r eff 2 ),
r eff = ( 4 r p 2 + 2 r s 2 ) 1 2 ,