Abstract

Optical emission from silicon is most practically accessible through nonlinear optical wave mixing, due to the indirect bandgap of the material. Although silicon is a material that absorbs visible light, third-harmonic generation driven by infrared signals can be used to generate visible light in silicon structures. In this work, we present a comprehensive investigation into third-harmonic generation in silicon-on-insulator waveguides. We demonstrate that few-micrometer length waveguides can be used to up-convert ultrafast 1550nm laser pulses to their third-harmonic with efficiencies up to ηTHG=2.8×105, the highest third-harmonic generation conversion efficiency reported to date in a silicon-based structure. Nonlinear propagation through 200μm long waveguides produces self-compressing temporal solitons, which dramatically broaden and blue shift the observed third-harmonic spectrum. Such devices are envisioned to provide a method for generating coherent visible signals within an integrated, CMOS compatible platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics

Christelle Monat, Christian Grillet, Bill Corcoran, David J. Moss, Benjamin J. Eggleton, Thomas P. White, and Thomas F. Krauss
Opt. Express 18(7) 6831-6840 (2010)

Third-harmonic UV generation in silicon nitride nanostructures

Tingyin Ning, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty
Opt. Express 21(2) 2012-2017 (2013)

Efficient photon triplet generation in integrated nanophotonic waveguides

Michael G. Moebius, Felipe Herrera, Sarah Griesse-Nascimento, Orad Reshef, Christopher C. Evans, Gian Giacomo Guerreschi, Alán Aspuru-Guzik, and Eric Mazur
Opt. Express 24(9) 9932-9954 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  2. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
    [Crossref]
  3. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
    [Crossref]
  4. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
    [Crossref] [PubMed]
  5. G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19(10), 556–572 (1967).
    [Crossref]
  6. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [Crossref] [PubMed]
  7. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [Crossref]
  8. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [Crossref]
  9. M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
    [Crossref] [PubMed]
  10. A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20(4), 4085–4101 (2012).
    [Crossref] [PubMed]
  11. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [Crossref] [PubMed]
  12. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  13. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
    [Crossref]
  14. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
    [Crossref]
  15. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
    [Crossref] [PubMed]
  16. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
    [Crossref]
  17. S. Sederberg and A. Y. Elezzabi, “Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator,” Appl. Phys. Lett. 102(1), 011133 (2013).
    [Crossref]
  18. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54μm,” Opt. Express 10(22), 1305–1313 (2002).
    [Crossref] [PubMed]
  19. R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electron. Lett. 38(22), 1352–1354 (2002).
    [Crossref]
  20. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [Crossref] [PubMed]
  21. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
    [Crossref] [PubMed]
  22. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  23. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
    [Crossref] [PubMed]
  24. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref] [PubMed]
  25. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  26. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
    [Crossref]
  27. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All-optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
    [Crossref] [PubMed]
  28. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
    [Crossref] [PubMed]
  29. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).
  30. Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase modulation induced spectral broadening in silicon waveguides,” Opt. Express 13(5), 829–834 (2004).
    [Crossref]
  31. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
    [Crossref]
  32. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
    [Crossref] [PubMed]
  33. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
    [Crossref] [PubMed]
  34. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
    [Crossref] [PubMed]
  35. S. Sederberg and A. Y. Elezzabi, “Nonmonotonic wavelength-dependent power scaling in silicon-on-insulator waveguides via nonlinear optical effect conglomeration,” ACS. Photon. 1(7), 576–581 (2014).
    [Crossref]
  36. A. J. Shaikh and O. Sidek, “Making silicon emit light using third harmonic generation,” Procedia Engineer. 29, 1456–1461 (2012).
    [Crossref]
  37. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
    [Crossref]
  38. S. Sederberg and A. Y. Elezzabi, “Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion,” Phys. Rev. Lett. 114(22), 227401 (2015).
    [Crossref] [PubMed]
  39. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
    [Crossref]
  40. S. Sederberg and A. Y. Elezzabi, “Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications,” Opt. Mater. 48, 150–155 (2015).
    [Crossref]
  41. S. Sederberg and A. Y. Elezzabi, “Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide,” Phys. Rev. Lett. 113(16), 167401 (2014).
    [Crossref] [PubMed]
  42. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [Crossref] [PubMed]
  43. N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Lightwave Technol. 25(9), 2495–2501 (2007).
    [Crossref]
  44. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  45. R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
    [Crossref]

2017 (1)

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

2015 (2)

S. Sederberg and A. Y. Elezzabi, “Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications,” Opt. Mater. 48, 150–155 (2015).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion,” Phys. Rev. Lett. 114(22), 227401 (2015).
[Crossref] [PubMed]

2014 (2)

S. Sederberg and A. Y. Elezzabi, “Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide,” Phys. Rev. Lett. 113(16), 167401 (2014).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Nonmonotonic wavelength-dependent power scaling in silicon-on-insulator waveguides via nonlinear optical effect conglomeration,” ACS. Photon. 1(7), 576–581 (2014).
[Crossref]

2013 (2)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator,” Appl. Phys. Lett. 102(1), 011133 (2013).
[Crossref]

2012 (3)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

A. J. Shaikh and O. Sidek, “Making silicon emit light using third harmonic generation,” Procedia Engineer. 29, 1456–1461 (2012).
[Crossref]

A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20(4), 4085–4101 (2012).
[Crossref] [PubMed]

2011 (1)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

2009 (4)

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

2007 (6)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Lightwave Technol. 25(9), 2495–2501 (2007).
[Crossref]

2006 (5)

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref] [PubMed]

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

2005 (7)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[Crossref] [PubMed]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

2004 (4)

Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase modulation induced spectral broadening in silicon waveguides,” Opt. Express 13(5), 829–834 (2004).
[Crossref]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
[Crossref] [PubMed]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All-optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (3)

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54μm,” Opt. Express 10(22), 1305–1313 (2002).
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electron. Lett. 38(22), 1352–1354 (2002).
[Crossref]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

1967 (1)

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19(10), 556–572 (1967).
[Crossref]

1961 (1)

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Abedin, K. S.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

Ahorinta, R.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Albers, W. M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Baets, R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Bogaerts, W.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Boyraz, Ö.

Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase modulation induced spectral broadening in silicon waveguides,” Opt. Express 13(5), 829–834 (2004).
[Crossref]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All-optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
[Crossref] [PubMed]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Cao, Q.

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Chen, X.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Claps, R.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Corkum, P. B.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Cowan, A. R.

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
[Crossref] [PubMed]

Dadap, J. I.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Dekker, R.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Dimitropoulos, D.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Driessen, A.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

Dumon, P.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

Elezzabi, A. Y.

S. Sederberg and A. Y. Elezzabi, “Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion,” Phys. Rev. Lett. 114(22), 227401 (2015).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications,” Opt. Mater. 48, 150–155 (2015).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide,” Phys. Rev. Lett. 113(16), 167401 (2014).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Nonmonotonic wavelength-dependent power scaling in silicon-on-insulator waveguides via nonlinear optical effect conglomeration,” ACS. Photon. 1(7), 576–581 (2014).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator,” Appl. Phys. Lett. 102(1), 011133 (2013).
[Crossref]

Espinola, R. L.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Först, M.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref] [PubMed]

Foster, M. A.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

Franken, P.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Fu, L.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

Fukuda, H.

Gaeta, A. L.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Han, Y.

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Hill, A.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hsieh, I.-W.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

Indukuri, T.

Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase modulation induced spectral broadening in silicon waveguides,” Opt. Express 13(5), 829–834 (2004).
[Crossref]

Ippen, E. P.

Itabashi, S.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jalali, B.

Johnston, K.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Kärtner, F. X.

Kauranen, M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Kawanishi, T.

Khilo, A.

Koonath, P.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Liang, T. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Littler, I.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

McNab, S. J.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

Miyazaki, T.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Moormann, C.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

Motamedi, A. R.

Naumov, A. Yu.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Nejadmalayeri, A. H.

New, G. H. C.

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19(10), 556–572 (1967).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Niehusmann, J.

Nunes, L. R.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Osgood, R. M.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Paniccia, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Peters, C.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Priem, G. R. A.

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Raghunathan, V.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Rieger, G. W.

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
[Crossref] [PubMed]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Rodriguez, F. J.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Ropers, C.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Sakamoto, T.

Salem, R.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

Sasagawa, K.

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Sederberg, S.

S. Sederberg and A. Y. Elezzabi, “Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion,” Phys. Rev. Lett. 114(22), 227401 (2015).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications,” Opt. Mater. 48, 150–155 (2015).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide,” Phys. Rev. Lett. 113(16), 167401 (2014).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Nonmonotonic wavelength-dependent power scaling in silicon-on-insulator waveguides via nonlinear optical effect conglomeration,” ACS. Photon. 1(7), 576–581 (2014).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator,” Appl. Phys. Lett. 102(1), 011133 (2013).
[Crossref]

Shaikh, A. J.

A. J. Shaikh and O. Sidek, “Making silicon emit light using third harmonic generation,” Procedia Engineer. 29, 1456–1461 (2012).
[Crossref]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Shoji, T.

Sidek, O.

A. J. Shaikh and O. Sidek, “Making silicon emit light using third harmonic generation,” Procedia Engineer. 29, 1456–1461 (2012).
[Crossref]

Sipe, J. E.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Sivis, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Staudte, A.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Suzuki, N.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

Takahashi, J.

Takahashi, M.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Taucer, M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Trebino, R.

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Tsang, H. K.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Tsuchiya, M.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Usechak, N.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

Vampa, G.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Van Thourhout, D.

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Veniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Villeneuve, D. M.

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

Vlasov, Y. A.

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Wahlbrink, T.

Wang, F. X.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Ward, J. F.

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19(10), 556–572 (1967).
[Crossref]

Watanabe, T.

Weinreich, G.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Yamada, K.

Young, J. F.

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
[Crossref] [PubMed]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

ACS. Photon. (1)

S. Sederberg and A. Y. Elezzabi, “Nonmonotonic wavelength-dependent power scaling in silicon-on-insulator waveguides via nonlinear optical effect conglomeration,” ACS. Photon. 1(7), 576–581 (2014).
[Crossref]

Appl. Phys. Lett. (2)

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator,” Appl. Phys. Lett. 102(1), 011133 (2013).
[Crossref]

Appl.Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl.Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Electron. Lett. (2)

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41(6), 320–321 (2005).
[Crossref]

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electron. Lett. 38(22), 1352–1354 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D: Appl. Phys. (1)

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Nature (3)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and A. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Nature Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nature Mater. 11, 148–154 (2012).
[Crossref]

Nature Photon. (2)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nature Photon. 2, 35–38 (2007).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Nature Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[Crossref]

Opt. Commun. (1)

T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006).
[Crossref]

Opt. Express (11)

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54μm,” Opt. Express 10(22), 1305–1313 (2002).
[Crossref] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express 13(19), 7298–7303 (2005).
[Crossref] [PubMed]

A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20(4), 4085–4101 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[Crossref] [PubMed]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All-optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004).
[Crossref] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006).
[Crossref] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase modulation induced spectral broadening in silicon waveguides,” Opt. Express 13(5), 829–834 (2004).
[Crossref]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

Opt. Express. (3)

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express. 12(8), 1611–1621 (2004).
[Crossref] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express. 14(12), 5524–5534 (2006).
[Crossref] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express. 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

Opt. Mater. (1)

S. Sederberg and A. Y. Elezzabi, “Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications,” Opt. Mater. 48, 150–155 (2015).
[Crossref]

Opt.Express (1)

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt.Express 15(3), 1135–1146 (2007).

Phys. Rev. B (1)

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Phys. Rev. Lett. (5)

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19(10), 556–572 (1967).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

S. Sederberg and A. Y. Elezzabi, “Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide,” Phys. Rev. Lett. 113(16), 167401 (2014).
[Crossref] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion,” Phys. Rev. Lett. 114(22), 227401 (2015).
[Crossref] [PubMed]

Procedia Engineer. (1)

A. J. Shaikh and O. Sidek, “Making silicon emit light using third harmonic generation,” Procedia Engineer. 29, 1456–1461 (2012).
[Crossref]

Rev. Sci. Instrum. (2)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorsescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[Crossref] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Science (2)

M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Yu. Naumov, D. M. Villeneuve, C. Ropers, and P. B. Corkum, “Tailored semiconductors for high-harmonic optoelectronics,” Science 357(6348), 303–306 (2017).
[Crossref] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic depiction of the experimental configuration. A laser pulse at λ = 1550nm is coupled into a Si waveguide using a microscope objective. Third-harmonic emission is collected from the output facet of the waveguide using a lensed optical fiber. (b) Scanning electron micrograph of a typical Si waveguide used in the experiments. (c) Optical micrograph of several Si waveguides integrated onto a single supporting Si ridge structure. Note that the optical fiber is drawn for illustrative purposes, and is not to scale.
Fig. 2
Fig. 2 Waveguide mode dispersion curves for low-order TM modes at the fundamental and third-harmonic frequencies for (a) w = 260 nm, (b) w = 470 nm, and (c) w = 760 nm. (d) Dispersion parameter as a function of wavelength for each waveguide width under consideration.
Fig. 3
Fig. 3 Measured peak power scaling of 3ω spectrum for each waveguide length: (a) L = 3.7 μ m, (b) L = 5.2 μ m, (c) L = 6.5 μ m, and (d) L = 7.6 μ m. The measured 3 ω spectrum at P p k ω = 100 W (the horizontal dashed line) is shownwith solid lines and the simulated spectrum for the same conditions is shown with dotted lines. The insets depict photographs of the THG, which is visibly emitted from the waveguide input and output facets. Note that the dotted lines in the inset indicate the location of the waveguide end facets.
Fig. 4
Fig. 4 Measured and calculated properties of the 3 ω spectra for w = 340 nm and varying waveguide lengths: (a) Peak wavelength and (b) full-width at half maximum.
Fig. 5
Fig. 5 Measured peak power scaling of 3 ω spectrum for each waveguide width at L = 200 μ m: (a) w = 4150 nm, (b) w = 2050 nm, (c) w = 1510 nm, (d) w = 1000 nm, (e) w = 760 nm, (f) w = 540 nm, (g) w = 470 nm, (h) w = 340 nm, and (i) w = 260 nm. The measured 3 ω spectrum at P p k ω = 100 W is shown with solid lines and the simulated spectrum for the same conditions is shown with dotted lines.
Fig. 6
Fig. 6 Measured peak power scaling of 3 ω spectrum for each waveguide width at L = 200 μ m: (a) w = 4150 nm, (b) w = 2050 nm, (c) w = 1510 nm, (d) w = 1000 nm, (e) w = 760 nm, (f) w = 540 nm, (g) w = 470 nm, (h) w = 340 nm, and (i) w = 260 nm. In these plots, each spectral slice has been normalized to unity to emphasize the spectral evolution as the peak power is increased.
Fig. 7
Fig. 7 Measured and calculated (a) 3 ω peak, and (b) FWHM versus waveguide width.
Fig. 8
Fig. 8 Envelope of the simulated instantaneous power passing through the output facet of the 200 μ m long waveguides for (a) w = 340 nm, P p k ω = 10 W; (b) w = 340 nm, P p k ω = 100 W; (c) w = 2050 nm, P p k ω = 10 W; and (d) w = 2050 nm, P p k ω = 100 W.

Tables (1)

Tables Icon

Table 1 Tabulated nonlinear parameter, peak intensity, and conversion efficiency for waveguides with widths between 260nm and 4150nm, for a fixed peak power, P p k ω = 100 W.

Metrics