Abstract

Laser detection and ranging (Ladar)-radar uses intensity-modulated laser beam for ranging and remote sensing. It has the advantages of high spatial resolution from Ladar and immunity to atmospheric turbulence from radar, since the synthetic wavelength is in the order of meters. Intensity modulated mid-IR laser can extend the Ladar-radar concept to mid-IR spectrum. An intensity modulated mid-IR light source with tunable wavelength and modulation frequency is presented. A dual-frequency 1064 nm laser is used to pump an optical parametric oscillator with magnesium oxide doped periodically-poled lithium niobate crystal (MgO:PPLN) as the nonlinear medium. The beat note frequency of the dual-frequency pump laser can be tuned from 140 to 160 MHz. When the pump power is 13 W, the idler output power at mid-IR is 2.38 W, corresponding to a pump-idler conversion efficiency of 19.4%. The wavelength of the idler light is tuned from 3.1 to 3.8 μm by changing the temperature of the MgO:PPLN crystal. The modulation spectra of the mid-IR light are studied. The frequency stability of the beat note in mid-IR is compared with the one in the pump, which are 4.1 Hz and 3 Hz in 240 second measuring time, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition

S. T. Yang, R. C. Eckardt, and R. L. Byer
J. Opt. Soc. Am. B 10(9) 1684-1695 (1993)

One-Watt level mid-IR output, singly resonant, continuous-wave optical parametric oscillator pumped by a monolithic diode laser

Ab F. Nieuwenhuis, Chris J. Lee, Bernd Sumpf, Peter J.M. van der Slot, Götz Erbert, and Klaus-J. Boller
Opt. Express 18(11) 11123-11131 (2010)

Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling

G. K. Samanta and M. Ebrahim-Zadeh
Opt. Express 16(10) 6883-6888 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008).
    [Crossref] [PubMed]
  2. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref] [PubMed]
  3. P. A. Crowther and P. S. Conti, “MSX mid-infrared imaging of massive star birth environments — I. Ultracompact H ii regions,” Mon. Not. R. Astron. Soc. 343(1), 143–163 (2003).
    [Crossref]
  4. J. X. Fan and Y. Zhang, “Development of new concept military infrared imaging system,” Infrar. Laser Eng. 37(3), 386–390 (2008).
  5. M. Schneider and F. Hase, “Technical Note: Recipe for monitoring of total ozone with a precision of around DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).
    [Crossref]
  6. J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
    [Crossref]
  7. D. Onori, F. Scotti, M. Scaffardi, A. Bogoni, and F. Laghezza, “Coherent Interferometric Dual-Frequency Laser Radar for Precise Range/Doppler Measurement,” J. Lightwave Technol. 34(20), 4828–4834 (2016).
    [Crossref]
  8. W. L. Eberhard and R. M. Schotland, “Dual-frequency Doppler-lidar method of wind measurement,” Appl. Opt. 19(17), 2967–2976 (1980).
    [Crossref] [PubMed]
  9. R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
    [Crossref] [PubMed]
  10. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing,” Appl. Opt. 50(11), 1560–1569 (2011).
    [Crossref] [PubMed]
  11. K. H. Kim and M. Y. Kim, “Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3,” Atmos. Environ. 35(24), 4059–4072 (2001).
    [Crossref]
  12. L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
    [Crossref]
  13. D. G. Youmans, “Spectral estimation of doppler spread vibrating targets using coherent ladar,” Proc. SPIE 5412, 229–240 (2004).
    [Crossref]
  14. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14(15), 776–778 (1989).
    [Crossref] [PubMed]
  15. K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm eye-safe coherent lidar system for wind velocity measurement,” Proc. SPIE 4153, 321–328 (2001).
    [Crossref]
  16. M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41(13), 3033–3036 (2016).
    [Crossref] [PubMed]
  17. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [Crossref] [PubMed]
  18. A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source,” Opt. Lett. 42(18), 3674–3677 (2017).
    [Crossref] [PubMed]
  19. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [Crossref] [PubMed]
  20. A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett. 32(10), 1281–1283 (2007).
    [Crossref] [PubMed]
  21. S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahimzadeh, “Stable, 17.5 W, optimally-output-coupled, Yb-fiber-pumped mid-infrared optical parametric oscillator, ” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThP6.
    [Crossref]
  22. Y. Kang, S. Yang, M. Brunel, L. Cheng, C. Zhao, and H. Zhang, “Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal,” Appl. Opt. 56(11), 2968–2972 (2017).
    [Crossref] [PubMed]
  23. L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
    [Crossref]
  24. L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
    [Crossref]
  25. R. W. Boyd, Nonlinear Optics 3rd ed. (Elsevier Pte Ltd.,2009).

2018 (2)

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

2017 (2)

2016 (2)

2011 (3)

2010 (1)

L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
[Crossref]

2008 (3)

J. X. Fan and Y. Zhang, “Development of new concept military infrared imaging system,” Infrar. Laser Eng. 37(3), 386–390 (2008).

M. Schneider and F. Hase, “Technical Note: Recipe for monitoring of total ozone with a precision of around DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).
[Crossref]

M. Vainio, J. Peltola, S. Persijn, F. J. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16(15), 11141–11146 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (1)

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

2004 (1)

D. G. Youmans, “Spectral estimation of doppler spread vibrating targets using coherent ladar,” Proc. SPIE 5412, 229–240 (2004).
[Crossref]

2003 (1)

P. A. Crowther and P. S. Conti, “MSX mid-infrared imaging of massive star birth environments — I. Ultracompact H ii regions,” Mon. Not. R. Astron. Soc. 343(1), 143–163 (2003).
[Crossref]

2001 (2)

K. H. Kim and M. Y. Kim, “Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3,” Atmos. Environ. 35(24), 4059–4072 (2001).
[Crossref]

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm eye-safe coherent lidar system for wind velocity measurement,” Proc. SPIE 4153, 321–328 (2001).
[Crossref]

1989 (1)

1980 (1)

Aadhi, A.

Asaka, K.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm eye-safe coherent lidar system for wind velocity measurement,” Proc. SPIE 4153, 321–328 (2001).
[Crossref]

Beghin, B.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Bergametti, G.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Bogoni, A.

Brunel, M.

Byer, R. L.

Chan, S. C.

Cheng, L.

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Y. Kang, S. Yang, M. Brunel, L. Cheng, C. Zhao, and H. Zhang, “Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal,” Appl. Opt. 56(11), 2968–2972 (2017).
[Crossref] [PubMed]

Conti, P. S.

P. A. Crowther and P. S. Conti, “MSX mid-infrared imaging of massive star birth environments — I. Ultracompact H ii regions,” Mon. Not. R. Astron. Soc. 343(1), 143–163 (2003).
[Crossref]

Crowther, P. A.

P. A. Crowther and P. S. Conti, “MSX mid-infrared imaging of massive star birth environments — I. Ultracompact H ii regions,” Mon. Not. R. Astron. Soc. 343(1), 143–163 (2003).
[Crossref]

Das, R.

Diaz, R.

Eberhard, W. L.

Fan, J. X.

J. X. Fan and Y. Zhang, “Development of new concept military infrared imaging system,” Infrar. Laser Eng. 37(3), 386–390 (2008).

Flaud, J. M.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Hale, C. P.

Halonen, L.

Harren, F. J.

Hase, F.

M. Schneider and F. Hase, “Technical Note: Recipe for monitoring of total ozone with a precision of around DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).
[Crossref]

Hebert, M.

L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
[Crossref]

Hébert, P. J.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Henderson, A.

Henderson, S. W.

Hirano, Y.

Huffaker, R. M.

Imaki, M.

Kameyama, S.

Kang, Y.

Kavaya, M. J.

Kawakami, S.

Kim, K. H.

K. H. Kim and M. Y. Kim, “Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3,” Atmos. Environ. 35(24), 4059–4072 (2001).
[Crossref]

Kim, M. Y.

K. H. Kim and M. Y. Kim, “Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3,” Atmos. Environ. 35(24), 4059–4072 (2001).
[Crossref]

Laghezza, F.

Leindecker, N.

Li, J.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Li, K.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Li, Z.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Liu, J. M.

Magee, J. R.

Maji, P. S.

Marandi, A.

Mertz, C.

L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
[Crossref]

Nakajima, M.

Navarro-Serment, L. E.

L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
[Crossref]

Onori, D.

Orphal, J.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Peltola, J.

Persijn, S.

Sakaizawa, D.

Samanta, G. K.

Scaffardi, M.

Schneider, M.

M. Schneider and F. Hase, “Technical Note: Recipe for monitoring of total ozone with a precision of around DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).
[Crossref]

Schotland, R. M.

Schunemann, P. G.

Scotti, F.

Sharma, V.

Shukla, M. K.

Singh, R. P.

Sorokin, E.

Sorokina, I. T.

Stafford, R.

Steck, T.

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

Sun, B.

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Ueno, S.

Vainio, M.

Vodopyanov, K. L.

Wang, X.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Yanagisawa, T.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm eye-safe coherent lidar system for wind velocity measurement,” Proc. SPIE 4153, 321–328 (2001).
[Crossref]

Yang, S.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Y. Kang, S. Yang, M. Brunel, L. Cheng, C. Zhao, and H. Zhang, “Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal,” Appl. Opt. 56(11), 2968–2972 (2017).
[Crossref] [PubMed]

Youmans, D. G.

D. G. Youmans, “Spectral estimation of doppler spread vibrating targets using coherent ladar,” Proc. SPIE 5412, 229–240 (2004).
[Crossref]

Zhang, H.

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Y. Kang, S. Yang, M. Brunel, L. Cheng, C. Zhao, and H. Zhang, “Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal,” Appl. Opt. 56(11), 2968–2972 (2017).
[Crossref] [PubMed]

Zhang, Y.

J. X. Fan and Y. Zhang, “Development of new concept military infrared imaging system,” Infrar. Laser Eng. 37(3), 386–390 (2008).

Zhao, C.

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Y. Kang, S. Yang, M. Brunel, L. Cheng, C. Zhao, and H. Zhang, “Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal,” Appl. Opt. 56(11), 2968–2972 (2017).
[Crossref] [PubMed]

Zhao, Y.

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Appl. Opt. (3)

Atmos. Chem. Phys. (1)

M. Schneider and F. Hase, “Technical Note: Recipe for monitoring of total ozone with a precision of around DU applying mid-infrared solar absorption spectra,” Atmos. Chem. Phys. 8(1), 63–71 (2008).
[Crossref]

Atmos. Environ. (1)

K. H. Kim and M. Y. Kim, “Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO2, NO2, and O3,” Atmos. Environ. 35(24), 4059–4072 (2001).
[Crossref]

C. R. Phys. (1)

J. Orphal, G. Bergametti, B. Beghin, P. J. Hébert, T. Steck, and J. M. Flaud, “Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit,” C. R. Phys. 6(8), 888–896 (2005).
[Crossref]

IEEE Photonics J. (1)

L. Cheng, S. Yang, C. Zhao, H. Zhang, and B. Sun, “Generation of RF intensity-modulated laser pulses by dual-frequency injection seeding,” IEEE Photonics J. 10(1), 1–9 (2018).
[Crossref]

Infrar. Laser Eng. (1)

J. X. Fan and Y. Zhang, “Development of new concept military infrared imaging system,” Infrar. Laser Eng. 37(3), 386–390 (2008).

Int. J. Robot. Res. (1)

L. E. Navarro-Serment, C. Mertz, and M. Hebert, “Pedestrian detection and tracking using three-dimensional ladar data,” Int. J. Robot. Res. 29(12), 1516–1528 (2010).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

L. Cheng, S. Yang, K. Li, J. Li, Y. Zhao, X. Wang, and Z. Li, “Frequency doubling of dual frequency injection seeding laser pulses,” Laser Phys. Lett. 15(7), 075002 (2018).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

P. A. Crowther and P. S. Conti, “MSX mid-infrared imaging of massive star birth environments — I. Ultracompact H ii regions,” Mon. Not. R. Astron. Soc. 343(1), 143–163 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Proc. SPIE (2)

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm eye-safe coherent lidar system for wind velocity measurement,” Proc. SPIE 4153, 321–328 (2001).
[Crossref]

D. G. Youmans, “Spectral estimation of doppler spread vibrating targets using coherent ladar,” Proc. SPIE 5412, 229–240 (2004).
[Crossref]

Other (2)

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahimzadeh, “Stable, 17.5 W, optimally-output-coupled, Yb-fiber-pumped mid-infrared optical parametric oscillator, ” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThP6.
[Crossref]

R. W. Boyd, Nonlinear Optics 3rd ed. (Elsevier Pte Ltd.,2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Illustration of the generation of high order signal and idler sidebands.
Fig. 2
Fig. 2 Diagram of the experimental setup of the dual-frequency OPO.
Fig. 3
Fig. 3 (a) Spectra of the idler at different temperatures (The crystal poling period is 31 μm.); (b) Wavelength of the idler versus temperature of the crystal at different poling periods.
Fig. 4
Fig. 4 Output power of the idler at different wavelengths and poling periods.
Fig. 5
Fig. 5 (a)Output powers and conversion efficiencies from pump to idler versus pump power at different poling period of crystal; (b)Power stability of the idler within 30 minutes.
Fig. 6
Fig. 6 Output powers and efficiencies of the idler versus the pump powers at different beat-note frequencies.
Fig. 7
Fig. 7 Modulation spectrum of the idler at different pump power radio.
Fig. 8
Fig. 8 Modulation tunability of the idler (The beat note frequency of the idler is the same as the pump, which is presented with dashed line.).
Fig. 9
Fig. 9 (a)Frequency stability of pump beat-note; (b)Frequency stability of idler beat-note.
Fig. 10
Fig. 10 (a), (b), (c), (d), (e)Modulation spectra of the idler at different pump power levels; (f)Modulation spectra of the signal at 12W of pump power.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ω 3 = ω 1 + ω 2
E 3 (z)= A 31 e i( k 3 z ω 3 t) + A 32 e i[ k 3 z( ω 3 +Δω)t]
E 2 (z)= A 2 e i( k 2 z ω 2 t)
E 1 (z) z =i K 1 E 3 (z) E 2 * (z) e iΔkz
E 2 (z) z =i K 2 E 3 (z) E 1 * (z) e iΔkz
E 3 (z) z =i K 3 E 1 (z) E 2 (z) e -iΔkz
E 1 (z) z =i K 1 { A 31 e i( k 3 z ω 3 t) + A 32 e i[ k 3 z( ω 3 +Δω)t] } A 2 e i( k 2 z ω 2 t) =i K 1 A 2 { A 31 e i( k 1 z ω 1 t) + A 32 e i[ k 1 z( ω 1 +Δω)t] }
E 11 (z)= A 2 K 1 k 1 { A 31 e i( k 1 z ω 1 t) + A 32 e i[ k 1 z( ω 1 +Δω)t] }
E 3 (z)= A 2 2 K 1 K 3 k 1 k 3 { A 31 e i( k 3 z ω 3 t) + A 32 e i[ k 3 z( ω 3 +Δω)t] }
E 21 (z)= A 2 K 1 K 2 k 1 k 2 { ( A 31 2 + A 32 2 ) e i( k 2 z ω 2 t) + A 31 A 32 e i[ k 2 z( ω 2 -Δω)t] + A 31 A 32 e i[ k 2 z( ω 2 +Δω)t] }
E 1 (z)= A 2 A 31 A 32 K 1 2 K 2 k 1 2 k 2 { A 31 e i[ k 1 z( ω 1 +Δω)t] + A 32 e i[ k 1 z( ω 1 +2Δω)t] }
E 1 (z)= A 2 A 31 A 32 K 1 2 K 2 k 1 2 k 2 { A 31 e i[ k 1 z( ω 1 -Δω)t] + A 32 e i( k 1 z ω 1 t) }
E 12 = E 1 + E 1
E 2 (z)= A 2 A 31 A 32 K 1 2 K 2 2 k 1 2 k 2 2 { ( A 31 2 + A 32 2 ) e i[ k 2 z( ω 2 Δω)t] + A 31 A 32 e i( k 2 z ω 2 t) + A 31 A 32 e i[ k 2 z( ω 2 2Δω)t] }
E 2 (z)= A 2 A 31 A 32 K 1 2 K 2 2 k 1 2 k 2 2 { ( A 31 2 + A 32 2 ) e i[ k 2 z( ω 2 +Δω)t] + A 31 A 32 e i( k 2 z ω 2 t) + A 31 A 32 e i[ k 2 z( ω 2 +2Δω)t] }
E 22 = E 2 + E 2
E 1 (z)= A 2 A 31 2 A 32 2 K 1 3 K 2 2 k 1 3 k 2 2 { A 31 e i[ k 1 z( ω 1 +2Δω)t] + A 32 e i[ k 1 z( ω 1 +3Δω)t] }
E 13 = E 1 + E 1
E 1 = E 11 + E 12 + E 13 ++ E 1N +

Metrics