Abstract

We report a tunable passively Q-switched fiber laser at the wavelengths near 3 μm, using large aspect ratio gold nanorods (LAR-GNRs) as a saturable absorber (SA) for the first time. The GNRs with a large average aspect ratio of up to ~20 were prepared using the seed-mediated growth method, which yielded a strong absorption band of 2.2–3 μm with a peak at ~2600 nm, stemming from longitudinal surface plasmon resonance (SPR). The corresponding nonlinear absorption was characterized using 2.87 μm ultrafast pulses, giving the modulation depth of 8.89%, saturation intensity of 14.9 MW/cm2, and nonsaturation loss of 39.9%. When introducing the material into a tunable Ho3+/Pr3+ codoped ZBLAN fiber laser as a SA, stable Q-switched pulses with a tunable wavelength within 2.83–2.88 μm were achieved. The largest output power of 30.8 mW, repetition rate of 78.12 kHz, and narrowest pulse width of 2.18 μs were simultaneously attained when tuned to ~2.865 μm at the pump power of 307.2 mW, while the largest pulse energy of 0.48 μJ was obtained at the longest tuning edge of 2.88 μm. Our work indicates that LAR-GNRs are a type of versatile broadband SA material available for the mid-infrared region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2  μm solid-state laser

Haitao Huang, Min Li, Pian Liu, Lin Jin, Hui Wang, and Deyuan Shen
Opt. Lett. 41(12) 2700-2703 (2016)

Gold nanobipyramid Q-switched Nd:LGGG eye-safe laser operating at 1423.4  nm

Huanian Zhang, Bowen Li, and Jie Liu
Appl. Opt. 55(26) 7351-7354 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
    [Crossref]
  2. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref] [PubMed]
  3. https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf
  4. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  5. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
    [Crossref] [PubMed]
  6. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  7. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref]
  8. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  9. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  10. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
    [Crossref]
  11. H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
    [Crossref]
  12. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  13. L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [Crossref]
  14. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
    [Crossref] [PubMed]
  15. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  16. Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
    [Crossref]
  17. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
    [Crossref]
  18. W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
    [Crossref] [PubMed]
  19. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]
  20. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  21. Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
    [Crossref] [PubMed]
  22. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
    [Crossref] [PubMed]
  23. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
    [Crossref] [PubMed]
  24. Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  25. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  26. Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  27. X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
    [Crossref]
  28. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
    [Crossref]
  29. X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
    [Crossref]
  30. J. S. Lee, J. H. Koo, J. H. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
    [Crossref]
  31. G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
    [Crossref]
  32. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
    [Crossref]
  33. Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
    [Crossref] [PubMed]
  34. Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
    [Crossref] [PubMed]
  35. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [Crossref] [PubMed]
  36. J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
    [Crossref]
  37. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
    [Crossref]
  38. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
    [Crossref] [PubMed]
  39. Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).
  40. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  41. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  42. F. Maes, V. Fortin, S. Poulain, M. Poulain, J. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92 μm,” Optica 5(7), 761–764 (2018).
    [Crossref]
  43. C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
    [Crossref] [PubMed]
  44. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
    [Crossref]

2018 (4)

2017 (7)

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

2016 (7)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

J. S. Lee, J. H. Koo, J. H. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
[Crossref] [PubMed]

2015 (7)

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
[Crossref]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

2014 (5)

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref] [PubMed]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

2013 (3)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

2012 (4)

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

2011 (2)

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

2009 (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

2008 (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

2006 (1)

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Aminossadati, S. M.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Bachelier, G.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Baida, H.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Bernier, M.

Bian, J.

Bowen, W. P.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Cai, Z.

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Carrée, J.

Charipar, N.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Che, K.

Chen, H.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, S. Q.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Chen, Y.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Christofilos, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

Crut, A.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Cui, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Dai, H. W.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

De Boni, L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Del Fatti, N.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Du, J.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Du, L.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Duan, W.

Dunkelberger, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Fan, D.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Fan, S. S.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Fan, Y.

Feng, Y.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Fontana, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Fortin, V.

Gao, C.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Gao, X. J.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Gao, Y.

Ge, Y.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Gilroy, K. D.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Guo, X. Y.

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Han, J. B.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

He, G.

He, J.

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Hernandez, F. E.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Hosono, H.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Hou, J.

Huang, B.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Huang, M. H.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Huang, Y.

Hudson, D. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Jackson, S. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z. X.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, G. B.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Jiang, T.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jin, Y.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Kang, Z.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Kizil, M. S.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Koo, J.

Koo, J. H.

Kotov, L. V.

Lee, J.

Lee, J. H.

Lee, J. S.

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, H.

Li, J.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Li, L.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Li, N.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref] [PubMed]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, H.

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, L.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Liu, M.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, M. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, X.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Liu, Y.

Lou, F.

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Lu, Z.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Luo, A. P.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Luo, H.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z.

Luo, Z. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Ma, Z. W.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Maes, F.

Maioli, P.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Miao, L. L.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Mongin, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Naciri, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Nie, H.

Nie, J.

Ning, J.

Nita, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Norwood, R. A.

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Owrutsky, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Park, K.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Peng, H. C.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Peng, J.

Peyghambarian, N.

Pique, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Poulain, M.

Poulain, S.

Qian, L.

Qin, G. S.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qin, W. P.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qin, Z.

Qiu, J.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Ratna, B.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Shemshad, J.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Shin, W.

Song, F.

Su, X.

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Sun, X.

Tang, D. Y.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Tang, P. H.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Tang, R.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

Tian, Q. J.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Tian, X.

Tong, M.

Toro, C.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Vaia, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Vallée, F.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Vallée, R.

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wang, J.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, L.

Wang, R.

Wang, X.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Wang, X. D.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Wang, Y.

Wang, Y. N.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Wang, Z.

Wei, C.

Wei, R.

Wei, W. T.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

Wen, S. C.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Weng, J.

Wood, E. L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Xia, H.

Xia, X.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Xia, Y.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Xu, B.

Xu, H.

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Xu, W. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Xu, Y.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, C. W.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, K.

Yang, Q.

Yang, R. Y.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yang, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yao, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Ye, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Yin, Y.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Yuan, P.

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Zhan, J.

Zhang, B.

Zhang, F.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Zhang, L.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, Q.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Zhang, S.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Zhao, D.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zhao, R.

Zhong, M.

Zhu, G.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Zhu, X.

Adv. Mater. (3)

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Appl. Phys. B (1)

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Appl. Phys. Lett. (5)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

IEEE Photonics J. (2)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Langmuir (1)

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Laser Phys. Lett. (4)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Nano Lett. (1)

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. Express (3)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Plasmonics (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Other (1)

https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The synthesis procedure of the LAR-GNRs.
Fig. 2
Fig. 2 (a) TEM image of the LAR-GNRs (Inset: the photograph of the aqueous solution of the LAR-GNRs), (b) linear absorption spectrum of the LAR-GNRs.
Fig. 3
Fig. 3 Nonlinear absorption of the LAR-GNRs measured at 2.87 μm.
Fig. 4
Fig. 4 Experimental setup of the designed wavelength tunable passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser based on LAR-GNRs SA.
Fig. 5
Fig. 5 Q-switched pulse train and single pulse waveform at the pump power of (a) 115.3 mW and (b) 307.2 mW. (c) Optical and (d) RF spectra at the pump power of 307.2 mW.
Fig. 6
Fig. 6 (a) Repetition rate and pulse width, and (b) output power and pulse energy as a function of the pump power.
Fig. 7
Fig. 7 Output power stability within 240 min.
Fig. 8
Fig. 8 Optical spectra of the passively Q-switched pulses when tuning at the pump power of 307.2 mW.
Fig. 9
Fig. 9 (a) Output power and repetition rate, (b) pulse width and pulse energy as a function of the wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔTexp(I/ I sat ) T ns ,

Metrics