Abstract

A novel method for laser frequency locking and intensity normalization in wavelength modulation spectroscopy (WMS)–based gas sensor system is reported. The center spacing between two second harmonic peaks demodulated from the rising and falling edges of a scanning triangular wave (for wavelength scan) is employed as a frequency locking reference. Amplitude of the directly acquired sine signal (for wavelength modulation) in the spectral region far away from the absorption feature is employed as an intensity normalization reference. A 50 ppm CH4:N2 sample sealed in a multi-pass cell at 1 atm was employed as the target analyte for demonstration. The frequency locking significantly improves measurement accuracy, and the introduced intensity normalization method realized a ~3 times SNR improvement as compared to the commonly used 1f normalization method under frequency locking conditions. A minimum measurement precision of ~2.5 ppbv was achieved with a normalized noise equivalent absorption coefficient of 1.8 × 10−9 cm−1Hz-1/2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser

Lei Tao, Kang Sun, M. Amir Khan, David J. Miller, and Mark A. Zondlo
Opt. Express 20(27) 28106-28118 (2012)

Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines

Andreas Karpf and Gottipaty N. Rao
Appl. Opt. 49(8) 1406-1413 (2010)

Time-resolved wavelength modulation spectroscopy measurements of HO2 kinetics

Craig A. Taatjes and Daniel B. Oh
Appl. Opt. 36(24) 5817-5821 (1997)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
    [Crossref]
  2. M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries–a review,” Rev. Chem. Eng. 23(2), 65–147 (2007).
    [Crossref]
  3. J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
    [Crossref]
  4. W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).
  5. J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
    [Crossref] [PubMed]
  6. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
    [Crossref] [PubMed]
  7. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
    [Crossref] [PubMed]
  8. S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
    [Crossref]
  9. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883–889 (1965).
    [Crossref]
  10. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32(5), 285–288 (1942).
    [Crossref]
  11. L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
    [Crossref]
  12. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
    [Crossref]
  13. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
    [Crossref] [PubMed]
  14. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3–4), 503–511 (2004).
    [Crossref]
  15. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
    [Crossref] [PubMed]
  16. C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
    [Crossref] [PubMed]
  17. K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
    [Crossref]
  18. J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
    [Crossref]
  19. G. Zhao, W. Tan, J. Hou, X. Qiu, W. Ma, Z. Li, L. Dong, L. Zhang, W. Yin, L. Xiao, O. Axner, and S. Jia, “Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser,” Opt. Express 24(2), 1723–1733 (2016).
    [Crossref] [PubMed]
  20. T. R. S. Hayden and G. B. Rieker, “Large amplitude wavelength modulation spectroscopy for sensitive measurements of broad absorbers,” Opt. Express 24(24), 27910–27921 (2016).
    [Crossref] [PubMed]
  21. T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).
  22. T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
    [Crossref]
  23. L. Dong, W. Yin, W. Ma, and S. Jia, “A novel control system for automatically locking a diode laser frequency to a selected gas absorption line,” Meas. Sci. Technol. 18(5), 1447–1452 (2007).
    [Crossref]
  24. P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
    [Crossref]
  25. Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
    [Crossref] [PubMed]
  26. P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
    [Crossref]

2018 (1)

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

2017 (1)

Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (4)

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

2014 (1)

2013 (1)

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

2012 (1)

J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
[Crossref]

2009 (1)

2007 (2)

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries–a review,” Rev. Chem. Eng. 23(2), 65–147 (2007).
[Crossref]

L. Dong, W. Yin, W. Ma, and S. Jia, “A novel control system for automatically locking a diode laser frequency to a selected gas absorption line,” Meas. Sci. Technol. 18(5), 1447–1452 (2007).
[Crossref]

2006 (2)

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3–4), 503–511 (2004).
[Crossref]

2003 (1)

2001 (1)

1994 (1)

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
[Crossref]

1993 (1)

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

1984 (1)

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

1965 (1)

1942 (1)

Aminossadati, S. M.

J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
[Crossref]

Anderson, J. G.

Axner, O.

Bechara, J.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
[Crossref]

Chao, X.

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Chen, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Christophera, J. D.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Dong, L.

G. Zhao, W. Tan, J. Hou, X. Qiu, W. Ma, Z. Li, L. Dong, L. Zhang, W. Yin, L. Xiao, O. Axner, and S. Jia, “Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser,” Opt. Express 24(2), 1723–1733 (2016).
[Crossref] [PubMed]

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

L. Dong, W. Yin, W. Ma, and S. Jia, “A novel control system for automatically locking a diode laser frequency to a selected gas absorption line,” Meas. Sci. Technol. 18(5), 1447–1452 (2007).
[Crossref]

Gao, X.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Gluszek, A. K.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Goldenstein, C.

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Goldenstein, C. S.

Gong, P.

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

Griffin, R. J.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Guo, J.

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Hamlingtona, P. E.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Hanson, R.

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Hanson, R. K.

Hayden, T. R. S.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

T. R. S. Hayden and G. B. Rieker, “Large amplitude wavelength modulation spectroscopy for sensitive measurements of broad absorbers,” Opt. Express 24(24), 27910–27921 (2016).
[Crossref] [PubMed]

Herriott, D. R.

Hou, J.

Jeffries, J.

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Jeffries, J. B.

Jia, S.

Kizil, M. S.

J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
[Crossref]

Lackner, M.

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries–a review,” Rev. Chem. Eng. 23(2), 65–147 (2007).
[Crossref]

Lapointea, C.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Lapson, L.

Li, C.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Li, H.

Li, Z.

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3–4), 503–511 (2004).
[Crossref]

Liu, K.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Liu, X.

Luo, L.

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).

Ma, W.

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
[Crossref]

Mücke, R.

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Nigama, S. P.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Paul, J. B.

Petrykowskia, D. J.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Qi, X. Q.

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

Qiu, X.

Ren, W.

Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
[Crossref] [PubMed]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).

Rieker, G. B.

Robert, P.

Saito, S.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Sanchez, N. P.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Sancheza, A.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
[Crossref]

Schilt, S.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
[Crossref] [PubMed]

Schulte, H. J.

Schultz, I. A.

Shao, J.

J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
[Crossref] [PubMed]

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Shemshad, J.

J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
[Crossref]

Slemr, F.

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Strand, C. L.

Strobelb, M.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Sun, K.

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Sur, R.

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Tan, T.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Tan, W.

Thévenaz, L.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
[Crossref] [PubMed]

Tittel, F. K.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).

Upadhyeb, A.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Wang, G.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Wang, L.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Wang, Q.

Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
[Crossref] [PubMed]

Wang, R.

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

Wang, Z.

Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
[Crossref] [PubMed]

Werle, P. O.

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

White, J. U.

Wimera, N. T.

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Xiang, J.

Xiao, L.

Xie, L.

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

Yamamoto, Y.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Yanagawa, T.

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

Yin, W.

Ying, C.

J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
[Crossref] [PubMed]

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Zhang, L.

Zhang, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Zhao, G.

Zhou, Z.

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Appl. Opt. (7)

J. Shao, J. Xiang, O. Axner, and C. Ying, “Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth,” Appl. Opt. 55(9), 2339–2345 (2016).
[Crossref] [PubMed]

S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
[Crossref] [PubMed]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45(5), 1052–1061 (2006).
[Crossref] [PubMed]

D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883–889 (1965).
[Crossref]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48(29), 5546–5560 (2009).
[Crossref] [PubMed]

C. S. Goldenstein, C. L. Strand, I. A. Schultz, K. Sun, J. B. Jeffries, and R. K. Hanson, “Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes,” Appl. Opt. 53(3), 356–367 (2014).
[Crossref] [PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001).
[Crossref] [PubMed]

Appl. Phys. B (2)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78(3–4), 503–511 (2004).
[Crossref]

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
[Crossref]

Appl. Phys. Lett. (2)

T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45(8), 826–828 (1984).
[Crossref]

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Gong, L. Xie, X. Q. Qi, and R. Wang, “QEPAS-based central wavelength stabilized diode laser for gas sensing,” IEEE Photonics Technol. Lett. 27(5), 545–548 (2015).
[Crossref]

Infrared Phys. Technol. (1)

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (3)

K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, and R. Hanson, “Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers,” Meas. Sci. Technol. 24(12), 125203 (2013).
[Crossref]

Q. Wang, Z. Wang, and W. Ren, “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection,” Meas. Sci. Technol. 28(6), 065102 (2017).
[Crossref] [PubMed]

L. Dong, W. Yin, W. Ma, and S. Jia, “A novel control system for automatically locking a diode laser frequency to a selected gas absorption line,” Meas. Sci. Technol. 18(5), 1447–1452 (2007).
[Crossref]

Opt. Commun. (1)

J. Shao, J. Guo, L. Wang, C. Ying, and Z. Zhou, “Self-calibration methodology by normalized intensity for wavelength modulation spectroscopy measurement,” Opt. Commun. 336, 67–72 (2015).
[Crossref]

Opt. Express (2)

Proc. Combust. Inst. (1)

T. R. S. Hayden, D. J. Petrykowskia, A. Sancheza, S. P. Nigama, C. Lapointea, J. D. Christophera, N. T. Wimera, A. Upadhyeb, M. Strobelb, P. E. Hamlingtona, and G. B. Rieker, “Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films,” Proc. Combust. Inst. 37(2), 1571–1578 (2018).

Res. Chem. Intermed. (1)

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3–5), 525–556 (1994).
[Crossref]

Rev. Chem. Eng. (1)

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries–a review,” Rev. Chem. Eng. 23(2), 65–147 (2007).
[Crossref]

Sens. Actuators B Chem. (2)

J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171, 77–92 (2012).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators B Chem. 220, 1000–1005 (2015).
[Crossref]

Sensor. Actuat. B-Chem. (1)

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sensor. Actuat. B-Chem. 221, 1062–1068 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the experimental WMS setup.
Fig. 2
Fig. 2 Schematic diagram of the proposed method for frequency locking. Inset figure: denoised 2f signal (in red) and raw 2f signal (in black).
Fig. 3
Fig. 3 Relationships between laser current, frequency (in wavenumber) and center spacing.
Fig. 4
Fig. 4 Comparisons of the results under laser frequency locking OFF and ON. (a) Results of the center spacing; (b) Results of the 2f values.
Fig. 5
Fig. 5 Schematic diagram of the proposed method for 2f signal normalization. (a) 2f signal and 2f peak value; (b) direct signal (DS) and DS-sine value (inset figure); (c) 1f signal and 1f value.
Fig. 6
Fig. 6 Linear fit of the DA values vs. DS-sine values at different optical intensities.
Fig. 7
Fig. 7 Time-series measurements of 2f, DS-sine and 1f signals when laser frequency is locked.
Fig. 8
Fig. 8 Time-series concentration measurements using different normalization methods under different conditions. (a) Normalized 2f signal by DS-sine value (2f/DS-sine); (b) Normalized 2f signal by 1f value (2f/1f).
Fig. 9
Fig. 9 Allan variances for 2f/1f–free, 2f/DS-free, 2f/1f–lock, and 2f/DS–lock.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X P 2f I 0 | ν= ν 0 P 2f P 1f | ν= ν 0

Metrics