Abstract

The polarization of light conveys unique information that can be exploited by crucial applications. The bulky and costly discrete optical components used in conventional polarimeters limit their broad adoption. A compact, low-cost polarimeter would bring this functionality into a myriad of new scenarios and revolutionize its exploitation. Here we present a high-performance, full-Stokes polarimeter on a silicon chip. A surface polarization splitter and on-chip optical interferometer circuit produce the complete analysis matrix of an optimally conditioned polarimeter. A matrix analysis on measurement errors is also performed. This solid-state polarimeter is a system-on-a-chip with exceptional compactness, stability, and speed that could be used singly or in integrated arrays. Large arrays can increase the speed and resolution of full-Stokes imaging; therefore, our design provides a scalable polarimeter solution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact metasurface in-line polarimeter

J. P. Balthasar Mueller, Kristjan Leosson, and Federico Capasso
Optica 3(1) 42-47 (2016)

Coherent solid-state LIDAR with silicon photonic optical phased arrays

Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, and Michael R. Watts
Opt. Lett. 42(20) 4091-4094 (2017)

Integrated optical driver for interferometric optical gyroscopes

Minh A. Tran, Tin Komljenovic, Jared C. Hulme, MJ Kennedy, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 25(4) 3826-3840 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
    [Crossref]
  2. A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
    [Crossref] [PubMed]
  3. Y.-L. Zhang and F. Cao, “Fine particulate matter (PM 2.5) in China at a city level,” Sci. Reports 5, 14884 (2015).
    [Crossref]
  4. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Proc. Camb. Philos. 1, 115–116 (1852).
  5. P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
    [Crossref]
  6. J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3, 42–47 (2016).
    [Crossref]
  7. A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
    [Crossref] [PubMed]
  8. F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
    [Crossref]
  9. Editorial: Simply silicon,” Nat. Photonics 4, 491 (2010).
    [Crossref]
  10. R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
    [Crossref]
  11. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  12. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  13. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref] [PubMed]
  14. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
    [Crossref] [PubMed]
  15. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  16. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic stokes vector receiver and I/Q modulator,” Opt. Express 24, 14208–14214 (2016).
    [Crossref] [PubMed]
  17. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
    [Crossref]
  18. M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” in Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM), (World Scientific, 2008), pp. 857–868.
    [Crossref]
  19. K. Twietmeyer and R. A. Chipman, “Optimization of mueller matrix polarimeters in the presence of error sources,” Opt. Express 16, 11589–11603 (2008).
    [Crossref] [PubMed]
  20. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002).
    [Crossref] [PubMed]
  21. Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
    [Crossref] [PubMed]
  22. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).
    [Crossref]
  23. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
    [Crossref]
  24. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
    [Crossref]
  25. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  26. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  27. M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
    [Crossref] [PubMed]

2018 (1)

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

2017 (3)

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

2016 (4)

2015 (3)

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref] [PubMed]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Y.-L. Zhang and F. Cao, “Fine particulate matter (PM 2.5) in China at a city level,” Sci. Reports 5, 14884 (2015).
[Crossref]

2014 (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
[Crossref] [PubMed]

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

2012 (2)

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

Editorial: Simply silicon,” Nat. Photonics 4, 491 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

2008 (1)

2007 (1)

A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
[Crossref] [PubMed]

2004 (1)

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

2002 (1)

1852 (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Proc. Camb. Philos. 1, 115–116 (1852).

Afshinmanesh, F.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

Alfano, R. R.

R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
[Crossref]

Almeida, V. R.

Baehr-Jones, T.

Baets, R.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Bailey, J.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Barrios, C. A.

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Bott, K.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Brongersma, M. L.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

Cai, W.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Cao, F.

Y.-L. Zhang and F. Cao, “Fine particulate matter (PM 2.5) in China at a city level,” Sci. Reports 5, 14884 (2015).
[Crossref]

Capasso, F.

Chandrasekhar, S.

Chen, B. H.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, J.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chen, X.

Chen, Y.-K.

Chen, Z.

Chipman, R. A.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Chrostowski, L.

Chrysostomou, A.

A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
[Crossref] [PubMed]

Chuang, C.-J.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chung, T. L.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Cotton, D. V.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Davids, P. S.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

DeRose, C. T.

Dong, P.

Espinosa-Soria, A.

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

Fainman, Y.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

Fisher, M.

Foster, M. A.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Frateschi, N. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

Galvez, E. J.

R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
[Crossref]

Gould, M.

Grieco, A.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

Griol, A.

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

Han, S.

Hochberg, M.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Hough, J.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Hough, J. H.

A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
[Crossref] [PubMed]

Howarth, I. D.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Inoue, S.

M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” in Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM), (World Scientific, 2008), pp. 857–868.
[Crossref]

Jaeger, N. A.

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Kedziora-Chudczer, L.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Kim, K.

Lai, Y.-C.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Lee, K.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Leosson, K.

Liao, C. Y.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Lim, A. E.-J.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

Lo, G.-Q.

Lu, Z.

Lucas, P.

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Lucas, P. W.

A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
[Crossref] [PubMed]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Magill, P.

Martínez, A.

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Milione, G.

R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Mueller, J. B.

Muller, R. S.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Oldenbourg, R.

M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” in Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM), (World Scientific, 2008), pp. 857–868.
[Crossref]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
[Crossref] [PubMed]

Ouzounov, D. G.

Panepucci, R. R.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Quack, N.

Rodríguez-Fortuño, F. J.

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

Seok, T. J.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shi, L.

R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
[Crossref]

Shribak, M.

M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” in Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM), (World Scientific, 2008), pp. 857–868.
[Crossref]

Sinsky, J. H.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Souza, M. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

Starbuck, A. L.

Stokes, G. G.

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Proc. Camb. Philos. 1, 115–116 (1852).

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Trotter, D. C.

Tsai, D. P.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Twietmeyer, K.

Tyo, J. S.

Wang, C.-M.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, Y.

Watts, M. R.

White, J. S.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

Wu, M. C.

Wu, P. C.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Yang, S.

Yang, Y.

Yin, C.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Yun, H.

Zhang, F.

Zhang, Y.

Zhang, Y.-L.

Y.-L. Zhang and F. Cao, “Fine particulate matter (PM 2.5) in China at a city level,” Sci. Reports 5, 14884 (2015).
[Crossref]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Zortman, W. A.

ACS Photonics (1)

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Nano Lett. (1)

A. Espinosa-Soria, F. J. Rodríguez-Fortuño, A. Griol, and A. Martínez, “On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).
[Crossref]

Nat. Astron. (1)

D. V. Cotton, J. Bailey, I. D. Howarth, K. Bott, L. Kedziora-Chudczer, P. Lucas, and J. Hough, “Polarization due to rotational distortion in the bright star regulus,” Nat. Astron. 1, 690–696 (2017).
[Crossref]

Nat. Commun. (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref] [PubMed]

Nat. Photonics (5)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Editorial: Simply silicon,” Nat. Photonics 4, 491 (2010).
[Crossref]

R. R. Alfano, G. Milione, E. J. Galvez, and L. Shi, “Optical sources: A laser for complex spatial modes,” Nat. Photonics 10, 286–288 (2016).
[Crossref]

Nature (2)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

A. Chrysostomou, P. W. Lucas, and J. H. Hough, “Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136,” Nature 450, 71–73 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optica (2)

Proc. Camb. Philos. (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Proc. Camb. Philos. 1, 115–116 (1852).

Sci. Reports (1)

Y.-L. Zhang and F. Cao, “Fine particulate matter (PM 2.5) in China at a city level,” Sci. Reports 5, 14884 (2015).
[Crossref]

Science (1)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Other (1)

M. Shribak, S. Inoue, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” in Collected Works Of Shinya InouÉ: Microscopes, Living Cells, and Dynamic Molecules (With DVD-ROM), (World Scientific, 2008), pp. 857–868.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A schematic of the proposed polarimeter. Incident light is decomposed into two orthogonal linear-polarization components (indicated by the blue and red arrows) that are split and coupled to four waveguides. The orange arrows point to the propagation direction of light. The outputs of the six ports are connected to photodetectors for intensity readouts: I0, IL, I45, I135, IR, and I90. Four directional couplers compose an optical interferometer circuit to calculate the third and fourth Stokes parameters.
Fig. 2
Fig. 2 Schematic of SPS. The parameters Λ, D, and hetch are the period, diameter, and etch depth of the hole, respectively.
Fig. 3
Fig. 3 Simulation results of the full-etch SPS. (a) Coupling efficiency as a function of wavelength for different diameter and period; (b) peak efficiency and (c) 3 dB bandwidth as a function of diameter.
Fig. 4
Fig. 4 Simulation results of the full-etch SPS. (a) Coupling efficiency as a function of wavelength for different diameter and period; (b) peak efficiency and (c) 3 dB bandwidth as a function of diameter.
Fig. 5
Fig. 5 SEM images of the fabricated device. The green, blue, and red areas are the surface polarization splitter (SPS), waveguides, and directional couplers, respectively. The inset shows an enlarged image of the SPS.
Fig. 6
Fig. 6 Experimental Setup. Orange lines are the single mode fibers. PC is the polarization controller. PD is the photo-detector.
Fig. 7
Fig. 7 Experimental Setup. Orange lines are the single mode fibers. PC is the polarization controller. PD is the photodetector.
Fig. 8
Fig. 8 Performance of the SPS. For input of x-polarized light at normal incidence, (a) measured (solid) and simulated (dotted) coupling efficiency of light propagating in vertical waveguide (red), i.e., y-direction (ηy), and horizontal waveguide (blue), i.e., x-direction (ηx); (b) The simulated intensity distributions within the SPS under the x-polarized light at 1550 nm wavelength.
Fig. 9
Fig. 9 Experimental results. (a) front and (b) back views of Poincaré sphere with red dots indicating incident polarization states dispersed randomly; (c) measured normalized Stokes vector S′ = (S0, S1, S2, S3)T /S0 using our device (blue) and a commercial in-line polarimeter (red).
Fig. 10
Fig. 10 The experimental and simulated condition number of the device. The red and blue line are the experimental and numerical condition number κ of the matrix M′S as a function of the wavelength.
Fig. 11
Fig. 11 Numerical results of RMS error. The simulated RMS error as a function of (a) the range of the temperature fluctuation and (b) the intensity measurement relative error (IMRE).
Fig. 12
Fig. 12 Simulation and experimental results for the directional coupler (DC). Transmission in dB of straight-through (Through_Exp) and cross-coupling ports (Cross_Exp) vs. wavelength for the experiment (solid) and simulation (dotted).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I 0 1 2 | E x | 2
I 90 1 2 | E y | 2
I L 1 8 | E x e i π 2 + E y | 2
I 45 1 8 | E x + E y | 2
I 135 1 8 | E x E y | 2
I R 1 8 | E x + E y e i π 2 | 2
S M S I
M S = 4 * ( 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 )
M S = 2 * ( 2 κ x 1 2 0 0 0 0 2 κ y 1 2 2 κ x 1 2 0 0 0 0 2 κ y 1 2 0 a b c b c a 2 a d κ y 2 2 κ y 1 2 0 b a c a c b 2 b d κ y 2 2 κ y 1 2 )
I = M A S , S = M S I
I = ( M A + Δ M A ) S + Δ η ( M A + Δ M A ) S
S = M S ( M A + Δ M A ) S + M S Δ η ( M A + Δ M A ) S
Δ S = S S = M S Δ M A S + M S Δ η ( M A + Δ M A ) S
M M i j = M M i j T Δ T

Metrics