Abstract

Complex diffusive scattering media pose significant challenges for light focusing as well as optical imaging to be implemented in practice. Recently, it has been demonstrated that the wavefront shaping technique can be applied to realize focusing and imaging through scattering medium. Here we report dynamic optical manipulation of particles through turbid media by employing the interleaved segment wavefront correction method, which is an improved genetic algorithm providing faster convergence speed and higher peak to background ratio. Manipulating micro-beads behind a scattering medium along both one and two dimensional predesigned trajectories in real time has been successfully demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rapid wide-field imaging through scattering media by digital holographic wavefront correction

Runze Li, Tong Peng, Meiling Zhou, Xianghua Yu, Peng Gao, Junwei Min, Yanlong Yang, Ming Lei, Baoli Yao, Chunmin Zhang, and Tong Ye
Appl. Opt. 58(11) 2845-2853 (2019)

Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis

Yangyang Li, Rui Liu, Yang Wang, Dong Wen, Liangwei Meng, Jinling Lu, and Pengcheng Li
Opt. Express 24(8) 8382-8390 (2016)

Image restoration through thin turbid layers by correlation with a known object

Hexiang He, Yefeng Guan, and Jianying Zhou
Opt. Express 21(10) 12539-12545 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  2. M. Loktev, O. Soloviev, S. Savenko, and G. Vdovin, “Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation,” Opt. Lett. 36(14), 2656–2658 (2011).
    [Crossref] [PubMed]
  3. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
    [Crossref] [PubMed]
  4. C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
    [Crossref] [PubMed]
  5. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
    [Crossref] [PubMed]
  6. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  7. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  8. I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  9. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  10. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  11. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
    [Crossref]
  12. X. L. Deán-Ben, H. Estrada, and D. Razansky, “Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback,” Opt. Lett. 40(4), 443–446 (2015).
    [Crossref] [PubMed]
  13. Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
    [Crossref]
  14. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
    [Crossref]
  15. G. Volpe, L. Kurz, A. Callegari, G. Volpe, and S. Gigan, “Speckle optical tweezers: micromanipulation with random light fields,” Opt. Express 22(15), 18159–18167 (2014).
    [Crossref] [PubMed]
  16. V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
    [Crossref]
  17. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
    [Crossref] [PubMed]
  18. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  19. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
    [Crossref]
  20. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
    [Crossref] [PubMed]
  21. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36(6), 870–872 (2011).
    [Crossref] [PubMed]
  22. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19(4), 2989–2995 (2011).
    [Crossref] [PubMed]
  23. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref] [PubMed]
  24. R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
    [Crossref] [PubMed]
  25. O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).
  26. B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
    [Crossref]

2017 (2)

Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
[Crossref]

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

2015 (2)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

X. L. Deán-Ben, H. Estrada, and D. Razansky, “Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback,” Opt. Lett. 40(4), 443–446 (2015).
[Crossref] [PubMed]

2014 (4)

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

G. Volpe, L. Kurz, A. Callegari, G. Volpe, and S. Gigan, “Speckle optical tweezers: micromanipulation with random light fields,” Opt. Express 22(15), 18159–18167 (2014).
[Crossref] [PubMed]

2013 (2)

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[Crossref] [PubMed]

2012 (3)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

2011 (3)

2010 (8)

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
[Crossref]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

2006 (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Boccara, A. C.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Bossy, E.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

Bowman, R. W.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
[Crossref]

Bromberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Callegari, A.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Chaigne, T.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Cui, M.

Davidson, N.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Deán-Ben, X. L.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Desyatnikov, A. S.

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Estrada, H.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Fink, M.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Friesem, A. A.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Gigan, S.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

G. Volpe, L. Kurz, A. Callegari, G. Volpe, and S. Gigan, “Speckle optical tweezers: micromanipulation with random light fields,” Opt. Express 22(15), 18159–18167 (2014).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Guan, Y.

He, H.

Horstmeyer, R.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Judkewitz, B.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

Katz, O.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).

Kivshar, Y. S.

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Kurz, L.

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Lai, P.

Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
[Crossref]

Lei, M.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Leykam, D.

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Li, H.

Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
[Crossref]

Li, R.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Liang, Y.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Liu, Y.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Loktev, M.

Ma, C.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Min, J.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Mosk, A.

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Nixon, M.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Padgett, M. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
[Crossref]

Papadopoulos, I. N.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Peng, T.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Razansky, D.

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[Crossref] [PubMed]

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Ruan, H.

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Savenko, S.

Shvedov, V.

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Shvedov, V. G.

Silberberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Silberberg, Y. J. N. p.

O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).

Small, E.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).

Soloviev, O.

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

Vdovin, G.

Vellekoop, I. M.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Volpe, G.

Wang, L. V.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Wright, A. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
[Crossref]

Xu, X.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

Yan, S.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Yang, C.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

Yang, Y.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Yao, B.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Ye, T.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Yu, X.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
[Crossref]

Zhang, C.

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

Zhou, E. H.

Zhou, J.

Appl. Sci. (Basel) (1)

Z. Yu, H. Li, and P. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging,” Appl. Sci. (Basel) 7(12), 1320 (2017).
[Crossref]

Biomed Opt. Express (1)

O. Katz, E. Small, and Y. J. N. p. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Biomed Opt. Express 6(8), 549–553 (2012).

J. Opt. (3)

R. Li, T. Peng, Y. Liang, Y. Yang, B. Yao, X. Yu, J. Min, M. Lei, S. Yan, C. Zhang, and T. Ye, “Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media,” J. Opt. 19(10), 105602 (2017).
[Crossref] [PubMed]

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12(12), 124004 (2010).
[Crossref]

V. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nat. Photonics (6)

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Nat. Phys. (1)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A. 109(22), 8434–8439 (2012).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Supplementary Material (4)

NameDescription
» Visualization 1       Experimental results for refocusing scattered light and trapping particles through a scattering medium by using the ISC method, associated with Fig. 3.
» Visualization 2       Experimental results of manipulating a silica bead through a scattering media in a one dimensional trajectory, associated with Fig. 4.
» Visualization 3       Experimental results of manipulating silica beads through a scattering media along a rectangular trajectory, associated with Fig. 5.
» Visualization 4       Experimental results of manipulating silica beads through a scattering media along a circular trajectory, associated with Fig. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of the interleaved segment correction (ISC) method. (a) The pixel array of an SLM is divided into 180 × 180 segments, and each segment contains 6 × 6 pixels; (b) All segments are divided into nine interleaved groups, as marked by the numbers; (c) Each individual section is optimized in sequence, the optimized phase in each segment is labeled with different colors; (d) Final correction phase, which is obtained by merging the 9 independent correction phases.
Fig. 2
Fig. 2 Experimental setup for demonstrations of refocusing of the scattered light and particle manipulation behind a scattering medium. L: Lens, M: Mirror, SLM: Spatial light modulator, Obj: Objective lens, BS: Beam splitter, F: Filter. The inset displays the scattering medium S (cover glass coated with a thin layer of milk) and the cuvette containing particles (silica beads with diameter of 3 µm).
Fig. 3
Fig. 3 Experimental results for refocusing scattered light and trapping particles through a scattering medium by using the ISC method. (a) The speckles behind the scattering medium without phase correction; (b) Refocused scattered light with a correction phase after 900 optimization iteration; (c) The optimized phase pattern; (d) Refocusing 3 points simultaneously through the scattering medium; (e) The corresponding optimized phase pattern for refocusing the scattering light into 3 spots; (f)-(i) Trapping a bead through scattering medium by using the refocused beam, where the white triangle marks the focal point of the recollected scattered light (see Visualization 1); (j) Capturing three beads simultaneously through the scattering medium (Scale bar: 10 µm).
Fig. 4
Fig. 4 Experimental results of manipulating a silica bead through a scattering media in a one dimensional trajectory. (a)-(e) display the time resolved particle manipulation process (see Visualization 2), where the dotted and solid circles indicate the starting and current positions of the silica bead, and the dashed arrow points the particle moving direction. (Scale bar: 10 µm).
Fig. 5
Fig. 5 Experimental results of manipulating silica beads through a scattering media along two dimensional trajectories. (a)-(e) and (f)-(j) display the time resolved particle motion along a rectangular and circular trajectory(see Visualization 3 and Visualization 4), respectively. The white arrow indicates the moving direction of the trapped bead, and the dotted line traces the trajectory of the bead. (Scale bar: 10 µm).
Fig. 6
Fig. 6 Experimental evaluation of the range of the memory effect. (a) Focused scattering light at different blazed grating phase; (b) The normalized light intensity of the focal point corresponding to (a) as a function of the distance shifted from the central position.
Fig. 7
Fig. 7 Comparison of two different approaches for generating multiple focal points behind the scattering medium. (a) Result by superimposing a multi-focusing phase hologram and the optimized phase (CGH); (b) Result by directly optimizing multiple focal points with the ISC method (3 Points); (c) Intensity profiles along the white dashed lines in (a) and (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E m = n=1 N t mn A n e i φ n ,
P= k 1 x+ k 2 y.
I( θ,L )= k 0 θL/ sinh( k 0 θL ) ,
I= ( I 1 + I 2 + I 3 ) 2 /3 ,

Metrics