Abstract

The video recording–capable compact incoherent digital holographic camera system is proposed. The system consists of the linear polarizer, convex lens, geometric phase lens, and the polarized image sensor. The Fresnel hologram is recorded by this simple configuration in real time. The system parameters are analyzed and evaluated to record a better-quality hologram in a compact form-factor. The real-time holographic recording and its digitally reconstructed video playback are demonstrated with the proposed system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in self-interference incoherent digital holography

Joseph Rosen, A. Vijayakumar, Manoj Kumar, Mani Ratnam Rai, Roy Kelner, Yuval Kashter, Angika Bulbul, and Saswata Mukherjee
Adv. Opt. Photon. 11(1) 1-66 (2019)

Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. S. Bernard Kress, “A review of head-mounted displays (hmd) technologies and applications for consumer electronics,” Proc. SPIE 8720, 8720 (2013).
  2. C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [invited],” Appl. Opt. 55, A71–A85 (2016).
    [Crossref] [PubMed]
  3. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
    [Crossref]
  4. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
    [Crossref]
  5. S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
    [Crossref]
  6. J. Kim and M. S. Banks, “Resolution of temporal-multiplexing and spatial-multiplexing stereoscopic televisions,” Curr. Opt. Photon. 1, 34–44 (2017).
    [Crossref]
  7. M. Park and H.-J. Choi, “A method to compensate a luminance distortion of a time-multiplexing spatially interlaced stereoscopic three-dimensional display,” Curr. Opt. Photon. 2, 436–442 (2018).
  8. S. Yoon, H. Baek, S.-W. Min, S. gi Park, M.-K. Park, S.-H. Yoo, H.-R. Kim, and B. Lee, “Implementation of active-type lamina 3d display system,” Opt. Express 23, 15848–15856 (2015).
    [Crossref] [PubMed]
  9. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.
  10. K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
    [Crossref]
  11. K.-M. Jeong, H.-S. Kim, S.-I. Hong, S.-K. Lee, N.-Y. Jo, Y.-S. Kim, H.-G. Lim, and J.-H. Park, “Acceleration of integral imaging based incoherent fourier hologram capture using graphic processing unit,” Opt. Express 20, 23735–23743 (2012).
    [Crossref] [PubMed]
  12. P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).
  13. R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).
  14. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).
  15. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
    [Crossref]
  16. T. Kozacki, “Holographic display with tilted spatial light modulator,” Appl. Opt. 50, 3579–3588 (2011).
    [Crossref] [PubMed]
  17. M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324–2336 (2014).
    [Crossref] [PubMed]
  18. Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
    [Crossref] [PubMed]
  19. J. Cho, S. Kim, S. Park, B. Lee, and H. Kim, “Dc-free on-axis holographic display using a phase-only spatial light modulator,” Opt. Lett. 43, 3397–3400 (2018).
    [Crossref] [PubMed]
  20. T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (SpringerUS, 2006).
    [Crossref]
  21. S. Benton and V. Bove, Holographic Imaging (Wiley, 2008).
    [Crossref]
  22. K. Choi, J. Yim, S. Yoo, and S.-W. Min, “Self-interference digital holography with a geometric-phase hologram lens,” Opt. Lett. 42, 3940–3943 (2017).
    [Crossref] [PubMed]
  23. K. Choi, J. Yim, and S.-W. Min, “Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens,” Opt. Express 26, 16212–16225 (2018).
    [Crossref] [PubMed]
  24. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52, A117–A130 (2013).
    [Crossref] [PubMed]
  25. M. K. Kim, “Full color natural light holographic camera,” Optics Express 21, 9636–9642 (2013).
    [Crossref] [PubMed]
  26. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Optics Letters 32, 912–914 (2007).
    [Crossref] [PubMed]
  27. G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal grin lens,” Opt. Lett. 38, 5264–5267 (2013).
    [Crossref] [PubMed]
  28. N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
    [Crossref]
  29. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
    [Crossref]
  30. K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film pancharatnam lens with low f-number and high quality,” Opt. Express 23, 26086–26094 (2015).
    [Crossref] [PubMed]
  31. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
    [Crossref] [PubMed]
  32. X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42, 383–386 (2017).
    [Crossref] [PubMed]
  33. C. M. Nguyen, D. Muhammad, and H.-S. Kwon, “Spatially incoherent common-path off-axis color digital holography,” Appl. Opt. 57, 1504–1509 (2018).
    [Crossref] [PubMed]
  34. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
    [Crossref]
  35. T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings,” Opt. Lett. 43, 1698–1701 (2018).
    [Crossref] [PubMed]
  36. T.-C. Poon and J.-P. Liu, Introduction to modern digital holography: with MATLAB (Cambridge University, 2014).
  37. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
    [Crossref]
  38. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).
    [Crossref]
  39. P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13 – 17 (1994).
    [Crossref]
  40. S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
    [Crossref]
  41. G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a mach–zehnder setup,” Opt. Lett. 37, 713–715 (2012).
    [Crossref] [PubMed]
  42. S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).
  43. B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with fresnel elements,” Opt. Express 18, 962–972 (2010).
    [Crossref] [PubMed]
  44. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  45. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref] [PubMed]
  46. A. V. Oosterom and J. Strackee, “The solid angle of a plane triangle,” IEEE Transactions on Biomed. Eng. BME-30, 125–126 (1983).
    [Crossref]
  47. M. Berry, “Pancharatnam, virtuoso of the poincaré sphere: an appreciation,” Curr. Sci. 67, 220–223 (1994).
  48. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  49. W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
    [Crossref]
  50. J. Rosen and R. Kelner, “Modified lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22, 29048–29066 (2014).
    [Crossref] [PubMed]
  51. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of fresnel incoherent correlation holography (finch) using dual diffractive lenses on a spatial light modulator (slm),” Opt. Express 20, 9109–9121 (2012).
    [Crossref] [PubMed]
  52. C. Yousefzadeh, A. Jamali, C. McGinty, and P. J. Bos, “ächromatic limits" of pancharatnam phase lenses,” Appl. Opt. 57, 1151–1158 (2018).
    [Crossref] [PubMed]
  53. A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition, (2010), pp. 2366–2369.

2018 (7)

2017 (6)

2016 (4)

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [invited],” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (5)

2012 (3)

2011 (3)

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]

T. Kozacki, “Holographic display with tilted spatial light modulator,” Appl. Opt. 50, 3579–3588 (2011).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

2010 (1)

2008 (1)

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).

2007 (1)

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Optics Letters 32, 912–914 (2007).
[Crossref] [PubMed]

2004 (2)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

1998 (1)

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
[Crossref]

1997 (1)

1994 (2)

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13 – 17 (1994).
[Crossref]

M. Berry, “Pancharatnam, virtuoso of the poincaré sphere: an appreciation,” Curr. Sci. 67, 220–223 (1994).

1992 (1)

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

1983 (1)

A. V. Oosterom and J. Strackee, “The solid angle of a plane triangle,” IEEE Transactions on Biomed. Eng. BME-30, 125–126 (1983).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).
[Crossref]

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Awatsuji, Y.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42, 383–386 (2017).
[Crossref] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Baek, H.

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
[Crossref]

Banks, M. S.

Benton, S.

S. Benton and V. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Benton, S. A.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

Bernard Kress, T. S.

T. S. Bernard Kress, “A review of head-mounted displays (hmd) technologies and applications for consumer electronics,” Proc. SPIE 8720, 8720 (2013).

Berry, M.

M. Berry, “Pancharatnam, virtuoso of the poincaré sphere: an appreciation,” Curr. Sci. 67, 220–223 (1994).

Bhowmik, A. K.

Bos, P. J.

Bove, V.

S. Benton and V. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Brooker, G.

Cameron, C. D.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Chang, E.-Y.

Cheng, H.-H.

Cho, J.

J. Cho, S. Kim, S. Park, B. Lee, and H. Kim, “Dc-free on-axis holographic display using a phase-only spatial light modulator,” Opt. Lett. 43, 3397–3400 (2018).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Choi, H.-J.

Choi, K.

Choo, H.-G.

Ciddor, P.

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13 – 17 (1994).
[Crossref]

Coomber, S. D.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Da-Yong, W.

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Escuti, M. J.

Falldorf, C.

Faridian, A.

Finke, G.

Fukuda, T.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Gao, K.

Garbat, P.

gi Park, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Hahn, J.

Hao, C.

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Hariharan, P.

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13 – 17 (1994).
[Crossref]

Hasegawa, S.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Hashimoto, N.

Häussler, R.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).

Hayasaki, Y.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

Helen, S.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
[Crossref]

Hennelly, B. M.

Hirakawa, T.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Hong, J.

Hong, K.

Hong, S.-I.

Hore, A.

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition, (2010), pp. 2366–2369.

Hoshi, T.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Hubel, P. M.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

Ishii, N.

Jamali, A.

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [invited],” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Jeong, J.

Jeong, K.-M.

Jo, N.-Y.

Kang, H.

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Katano, Y.

Katz, B.

Kelner, R.

Kim, H.

Kim, H.-E.

Kim, H.-R.

Kim, H.-S.

Kim, J.

Kim, M. K.

Kim, S.

Kim, T.

Kim, Y.-S.

Kinoshita, N.

Kothiyal, M.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
[Crossref]

Kowiel, M.

Kozacki, T.

Kubota, T.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Kudenov, M. W.

Kujawinska, M.

Kumagai, K.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4, 298–302 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Kurihara, M.

Kwon, H.-S.

Lanman, D.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

Lee, B.

Lee, C.-K.

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements [invited],” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref] [PubMed]

Lee, S.-K.

Leister, N.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).

Li, G.

Li, H.

Li, Y.

Lim, H.-G.

Lim, Y.

Liu, J.-P.

T.-C. Poon and J.-P. Liu, Introduction to modern digital holography: with MATLAB (Cambridge University, 2014).

Lucente, M. E.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

Lupashin, V.

N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
[Crossref]

Matoba, O.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42, 383–386 (2017).
[Crossref] [PubMed]

McGinty, C.

Meeser, T.

Min, S.-W.

Miskiewicz, M. N.

Mochida, S.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Muhammad, D.

Muroi, T.

Nam, J.

Naughton, T.

Nguyen, C. M.

Niemelä, M.

Nishio, K.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Nobukawa, T.

Ochiai, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Oh, C.

Onural, L.

Oosterom, A. V.

A. V. Oosterom and J. Strackee, “The solid angle of a plane triangle,” IEEE Transactions on Biomed. Eng. BME-30, 125–126 (1983).
[Crossref]

Osten, W.

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).
[Crossref]

Park, J.-H.

Park, M.

Park, M.-K.

Park, S.

Pedrini, G.

Poon, T.

T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (SpringerUS, 2006).
[Crossref]

Poon, T.-C.

T.-C. Poon and J.-P. Liu, Introduction to modern digital holography: with MATLAB (Cambridge University, 2014).

Quan, X.

Raskar, R.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

Rekimoto, J.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

Rosen, J.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Schwerdtner, A.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).

Shinomura, M.

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Siegel, N.

N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
[Crossref]

G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal grin lens,” Opt. Lett. 38, 5264–5267 (2013).
[Crossref] [PubMed]

Sirohi, R.

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
[Crossref]

Slinger, C. W.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Smith, A. P.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Smith, M. A.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Stanley, M.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

St-Hilaire, P.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

Storrie, B.

N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
[Crossref]

Strackee, J.

A. V. Oosterom and J. Strackee, “The solid angle of a plane triangle,” IEEE Transactions on Biomed. Eng. BME-30, 125–126 (1983).
[Crossref]

Tahara, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Tanabe, A.

Tian-Long, M.

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Watson, P. J.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Wetzstein, G.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

Wolf, E.

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Wood, A.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Yamaguchi, I.

Yaras, F.

Yeom, J.

Yim, J.

Yoo, S.

Yoo, S.-H.

Yoon, S.

Yousefzadeh, C.

Yu-Hong, W.

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Zaperty, W.

Zhang, T.

Zhu-Qing, J.

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Ziou, D.

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition, (2010), pp. 2366–2369.

ACM Trans. Graph. (3)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 95 (2011).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3d: Augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 190 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: Realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Chin. Phys. Lett. (1)

W. Yu-Hong, M. Tian-Long, C. Hao, J. Zhu-Qing, and W. Da-Yong, “Effect of wavefront properties on numerical aperture of fresnel hologram in incoherent holographic microscopy,” Chin. Phys. Lett. 31, 044203 (2014).
[Crossref]

Curr. Opt. Photon. (2)

Curr. Sci. (1)

M. Berry, “Pancharatnam, virtuoso of the poincaré sphere: an appreciation,” Curr. Sci. 67, 220–223 (1994).

IEEE Transactions on Biomed. Eng. (1)

A. V. Oosterom and J. Strackee, “The solid angle of a plane triangle,” IEEE Transactions on Biomed. Eng. BME-30, 125–126 (1983).
[Crossref]

J. Opt. (1)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Nat. Photonics (1)

N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, “High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers,” Nat. Photonics 10, 802–808 (2016).
[Crossref]

Opt. Commun. (2)

P. Hariharan and P. Ciddor, “An achromatic phase-shifter operating on the geometric phase,” Opt. Commun. 110, 13 – 17 (1994).
[Crossref]

S. Helen, M. Kothiyal, and R. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249 – 254 (1998).
[Crossref]

Opt. Express (10)

K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film pancharatnam lens with low f-number and high quality,” Opt. Express 23, 26086–26094 (2015).
[Crossref] [PubMed]

K. Choi, J. Yim, and S.-W. Min, “Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens,” Opt. Express 26, 16212–16225 (2018).
[Crossref] [PubMed]

S. Yoon, H. Baek, S.-W. Min, S. gi Park, M.-K. Park, S.-H. Yoo, H.-R. Kim, and B. Lee, “Implementation of active-type lamina 3d display system,” Opt. Express 23, 15848–15856 (2015).
[Crossref] [PubMed]

K.-M. Jeong, H.-S. Kim, S.-I. Hong, S.-K. Lee, N.-Y. Jo, Y.-S. Kim, H.-G. Lim, and J.-H. Park, “Acceleration of integral imaging based incoherent fourier hologram capture using graphic processing unit,” Opt. Express 20, 23735–23743 (2012).
[Crossref] [PubMed]

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22, 2324–2336 (2014).
[Crossref] [PubMed]

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref] [PubMed]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]

J. Rosen and R. Kelner, “Modified lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems,” Opt. Express 22, 29048–29066 (2014).
[Crossref] [PubMed]

B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of fresnel incoherent correlation holography (finch) using dual diffractive lenses on a spatial light modulator (slm),” Opt. Express 20, 9109–9121 (2012).
[Crossref] [PubMed]

B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with fresnel elements,” Opt. Express 18, 962–972 (2010).
[Crossref] [PubMed]

Opt. Lett. (8)

G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe, “In-line finch super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal grin lens,” Opt. Lett. 38, 5264–5267 (2013).
[Crossref] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref] [PubMed]

J. Cho, S. Kim, S. Park, B. Lee, and H. Kim, “Dc-free on-axis holographic display using a phase-only spatial light modulator,” Opt. Lett. 43, 3397–3400 (2018).
[Crossref] [PubMed]

K. Choi, J. Yim, S. Yoo, and S.-W. Min, “Self-interference digital holography with a geometric-phase hologram lens,” Opt. Lett. 42, 3940–3943 (2017).
[Crossref] [PubMed]

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38, 5196–5199 (2013).
[Crossref] [PubMed]

X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42, 383–386 (2017).
[Crossref] [PubMed]

G. Pedrini, H. Li, A. Faridian, and W. Osten, “Digital holography of self-luminous objects by using a mach–zehnder setup,” Opt. Lett. 37, 713–715 (2012).
[Crossref] [PubMed]

T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings,” Opt. Lett. 43, 1698–1701 (2018).
[Crossref] [PubMed]

Optica (2)

Optics Express (1)

M. K. Kim, “Full color natural light holographic camera,” Optics Express 21, 9636–9642 (2013).
[Crossref] [PubMed]

Optics Letters (1)

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Optics Letters 32, 912–914 (2007).
[Crossref] [PubMed]

Proc. Indian Acad. Sci. - Sect. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. - Sect. A 44, 247–262 (1956).
[Crossref]

Proc. SPIE (1)

T. S. Bernard Kress, “A review of head-mounted displays (hmd) technologies and applications for consumer electronics,” Proc. SPIE 8720, 8720 (2013).

Proc.S PIE (1)

S. Mochida, M. Shinomura, T. Hirakawa, T. Fukuda, Y. Awatsuji, K. Nishio, and O. Matoba, “Single-shot incoherent digital holography using parallel phase-shifting radial shearing interferometry,” Proc.S PIE 10711, 10711 (2018).

Proc.SPIE (3)

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the mit holographic video display,” Proc.SPIE 1667, 1667 (1992).

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc.SPIE 6803, 6803 (2008).

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3d electronic holography display system using a 100 mega-pixel spatial light modulator,” Proc.SPIE 5249, 5249 (2004).

Other (7)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” in ACM SIGGRAPH 2015 Emerging Technologies, (ACM, New York, NY, USA, 2015), SIGGRAPH ’15, pp. 10:1.

T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (SpringerUS, 2006).
[Crossref]

S. Benton and V. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

T.-C. Poon and J.-P. Liu, Introduction to modern digital holography: with MATLAB (Cambridge University, 2014).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition, (2010), pp. 2366–2369.

Supplementary Material (4)

NameDescription
» Visualization 1       Video of the recorded hologram in a phase-angle representation of two resolution targets aligned along the axial direction.
» Visualization 2       Digitally reconstructed hologram video of the two resolution targets. First five seconds, the focusing plane is on the NBS target (digits with 4.0), and last five seconds, the USAF target (digits moving vertically) is on the focus.
» Visualization 3       Video of the recorded hologram in a phase-angle representation of the rotating white dice.
» Visualization 4       Digitally reconstructed hologram video of the rotating white dice.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) the illustration of the GPSIDH system, (b) schematic diagram of the system with the parameter and field labels. Red and blue dashed lines after the GP lens indicate the diverging and converging rays, respectively, each of which modulated by the negative and positive focal length of the GP lens. BPF, band-pass filter (used if necessary); lo, objective lens with focal length fo; P 1 , 2, first and last polarizer; lgp, GP lens with focal length of ± f g p; zo, object distance from lo; d, lo to lgp distance; and zh, lgp to sensor distance.
Fig. 2
Fig. 2 Poincaré sphere representation of the proposed system. (a) the second polarizer is in 45° state, (b) the second polarizer is rotated to the vertically aligned state. The geometric phase difference δ between (a) and (b) is 90°. The coordinate labels, S 1 , 2 , 3 are the Stokes parameters.
Fig. 3
Fig. 3 Illustration of the structure of polarized image sensor, and parallel phase-shifting method
Fig. 4
Fig. 4 (a) schematic optical diagram of the analyzed system, (b, c) conceptual illustration of the reconstructed image quality of hologram related to rh, where (b) has a large rh, and (c) has a small rh.
Fig. 5
Fig. 5 Plot of Δ O P L [ n ] to r s [ n ], when f o = 100 mm, d = 18 mm, z h = 20 mm, c l = (525 nm)2/32 nm =9.76 μ m. The legend denotes fgp. The solid horizontal arrows indicate the rh defined by each fgp.
Fig. 6
Fig. 6 (a) rh to zh relation, (b) system NA to zh relation. The legend denotes fgp.
Fig. 7
Fig. 7 (a) illustration of the custom-made GP lens profile recording system with component labels, (b) polarization optical microscopic image of the fabricated GP lens sample. The axis with label P and A indicate polarizer and analyzer axis, respectively.
Fig. 8
Fig. 8 Photograph of compact GPSIDH video camera prototype
Fig. 9
Fig. 9 Reconstructed results from the various systems with f g p = 50 mm, 100 mm, 164 mm from the top to bottom rows, and z h = 18 mm, 23 mm, 28 mm from the left to right columns. The digits inside the figure indicate the PSNR values compared to the system results with f g p = 164 mm and the equivalent zh.
Fig. 10
Fig. 10 (a) reconstruction results of the system with f g p = 164 mm when zh is changed from 18 mm to 63 mm, (b) chart of visibility values of group 2 element 2 of the USAF resolution target and the magnification factors of each sub-figures in (a).
Fig. 11
Fig. 11 (a) schematic illustration of the target configuration, (b) phase angle-only image of 91th frame of the recorded hologram video, (c,d) numerical reconstruction results of the hologram, where the best of focus is changed between the NBS and USAF targets. The images on (b-d) are cropped in 500 x 500 pixels. Also note Visualization 1 and Visualization 2, which is the hologram of two targets, while the digits on USAF target shifts vertically by the author’s manual control. On Visualization 1, the real-time captured hologram is represented as a phase-angle only video hologram, where the level of intensity from 0 to 255 represents the phase-angle from 0 to 2 π. On Visualization 2, the digitally reconstructed video hologram is presented.The first five seconds, the reconstruction plane is on the USAF 1951 target. The last five seconds, the plane is moved to focus on the NBS 1963A target. Visualization 2 is cropped to 500 x 500 pixels. BC: beam combiner.
Fig. 12
Fig. 12 The recording and reconstruction result of the dice object fixed on the putty-like adhesive. (a) reference view, (b) the phase-only hologram data, (c) numerical reconstruction results of (b). Figures (b) and (c) are cropped in 500 x 500 pixels. The phase-angle only hologram and the digitally reconstructed videos of the rotating dice are presented on Visualization 3 and Visualization 4, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I h ( x h , y h ; x o , y o , z o ) = | C 2 ( r o ¯ ) Q [ 1 z o ] L [ r o ¯ z o ] Q [ 1 f o ] * Q [ 1 d ] ( Q [ 1 f g p ] e j δ / 2 + Q [ 1 f g p ] e j δ / 2 ) * Q [ 1 z h ] | 2 .
I h ( x h , y h ; x o , y o , z o ) = C 3 + C 4 ( r o ¯ ) Q [ z r e c 1 ] L [ M p z r e c r o ¯ ] e i δ + C 4   ' ( r o ¯ ) Q [ z r e c 1 ] L [ M n z r e c r o ¯ ] e i δ ,
1 z r e c = 1 z h z n 1 z h z p ,
M p , n = z i z o z p , n d z i ,
H ( x h , y h ) = I o ( x o , y o , z o ) I h ( x h , y h ; x o , y o , z o ) d x o d y o d z o
tan  ( Ω A B C / 2 ) = a ^ ( b ^ × c ^ ) | a ^ | | b ^ | | c ^ | + ( a ^ b ^ ) c ^ + ( a ^ c ^ ) b ^ + ( b ^ c ^ ) a ^
C H [ p , q ] = ( H 3 [ p , q ] H 1 [ p , q ] ) j ( H 4 [ p , q ] H 2 [ p , q ] ) .
Δ O P L [ n ] = | O P L [ n ] p o s O P L [ n ] n e g | = | [ f o 2 + ( f g p r s [ n ] f g p z h ) 2 + z h 1 + ( r s [ n ] f g p z h ) 2 ] [ f o 2 + ( f g p r s [ n ] f g p + z h ) 2 + z h 1 + ( r s [ n ] f g p + z h ) 2 ] | ,
r o = f g p f g p z h r h .
N A = r o f o = r h f o f g p f g p z h .
f s 2 × ( r h / 2 ) / λ z r e c

Metrics