Abstract

Spin-orbit interaction of light is ubiquitous in any optical system. However, the relevant spin Hall effects are usually weak for the light scattering from nanoparticles, making it challengeable to detect directly in experiment. In this paper, we demonstrate enhanced broadband spin Hall effects by using core-shell nanoparticles. The electric and magnetic dipoles can be tuned by the core-shell nanostructure with great freedom, and are excited simultaneously in a broadband spectrum, resulting in robust enhanced spin Hall shifts. Moreover, the coupling of the electric dipole and electric quadrupole gives rise to enhanced spin Hall shifts at both forward and backward directions. Numerical results from far-field and near-field verify the strong spin-orbit interaction of light. Our work offers a new way to exploit spin Hall effects in superresolution imaging and spin-dependent displacement sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies

Iñigo Liberal, Iñigo Ederra, Ramón Gonzalo, and Richard W. Ziolkowski
Opt. Express 22(7) 8640-8653 (2014)

Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity

Chee Fai Fong, Yasutomo Ota, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 26(16) 21219-21234 (2018)

Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems

Konstantin Y. Bliokh, Elena A. Ostrovskaya, Miguel A. Alonso, Oscar G. Rodríguez-Herrera, David Lara, and Chris Dainty
Opt. Express 19(27) 26132-26149 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A, Pure Appl. Opt. 11(9), 094009 (2009).
    [Crossref]
  2. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  3. C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
    [Crossref]
  4. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  5. F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9(12), 776–778 (2015).
    [Crossref]
  6. D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
    [Crossref] [PubMed]
  7. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  8. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  9. A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express 14(18), 8425–8433 (2006).
    [Crossref] [PubMed]
  10. D. K. Sharma, V. Kumar, A. B. Vasista, S. K. Chaubey, and G. V. P. Kumar, “Spin-Hall effect in the scattering of structured light from plasmonic nanowire,” Opt. Lett. 43(11), 2474–2477 (2018).
    [Crossref] [PubMed]
  11. G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
    [Crossref]
  12. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  13. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]
  14. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref] [PubMed]
  15. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]
  16. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
    [Crossref] [PubMed]
  17. M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
    [Crossref] [PubMed]
  18. A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
    [Crossref] [PubMed]
  19. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
    [Crossref] [PubMed]
  20. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  21. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
    [Crossref] [PubMed]
  22. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  23. H. F. Arnoldus, X. Li, and J. Shu, “Subwavelength displacement of the far-field image of a radiating dipole,” Opt. Lett. 33(13), 1446–1448 (2008).
    [Crossref] [PubMed]
  24. Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34(17), 2551–2553 (2009).
    [Crossref] [PubMed]
  25. Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
    [Crossref] [PubMed]
  26. D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
    [Crossref]
  27. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  28. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38(11), 1857–1859 (2013).
    [Crossref] [PubMed]
  29. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  30. D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
    [Crossref]
  31. E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
    [Crossref] [PubMed]
  32. W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
    [Crossref]
  33. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).
  34. J. Soni, S. Mansha, S. Dutta Gupta, A. Banerjee, and N. Ghosh, “Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes,” Opt. Lett. 39(14), 4100–4103 (2014).
    [Crossref] [PubMed]
  35. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [Crossref] [PubMed]
  36. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
    [Crossref] [PubMed]
  37. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref] [PubMed]
  38. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  39. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  40. X. Zambrana-Puyalto, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Dual and anti-dual modes in dielectric spheres,” Opt. Express 21(15), 17520–17530 (2013).
    [Crossref] [PubMed]
  41. D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
    [Crossref] [PubMed]
  42. D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
    [Crossref] [PubMed]
  43. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
    [Crossref] [PubMed]
  44. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
    [Crossref] [PubMed]
  45. D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
    [Crossref]
  46. D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
    [Crossref] [PubMed]

2019 (1)

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

2018 (8)

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

D. K. Sharma, V. Kumar, A. B. Vasista, S. K. Chaubey, and G. V. P. Kumar, “Spin-Hall effect in the scattering of structured light from plasmonic nanowire,” Opt. Lett. 43(11), 2474–2477 (2018).
[Crossref] [PubMed]

2017 (1)

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

2016 (3)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

2015 (3)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9(12), 776–778 (2015).
[Crossref]

2014 (5)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref] [PubMed]

J. Soni, S. Mansha, S. Dutta Gupta, A. Banerjee, and N. Ghosh, “Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes,” Opt. Lett. 39(14), 4100–4103 (2014).
[Crossref] [PubMed]

2013 (4)

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett. 38(11), 1857–1859 (2013).
[Crossref] [PubMed]

X. Zambrana-Puyalto, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Dual and anti-dual modes in dielectric spheres,” Opt. Express 21(15), 17520–17530 (2013).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

2012 (5)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (4)

Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34(17), 2551–2553 (2009).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A, Pure Appl. Opt. 11(9), 094009 (2009).
[Crossref]

D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

2008 (4)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

H. F. Arnoldus, X. Li, and J. Shu, “Subwavelength displacement of the far-field image of a radiating dipole,” Opt. Lett. 33(13), 1446–1448 (2008).
[Crossref] [PubMed]

2007 (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

2006 (3)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express 14(18), 8425–8433 (2006).
[Crossref] [PubMed]

Aizpurua, J.

Araneda, G.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Arnoldus, H. F.

Bag, A.

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

Bakr, W. S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Banerjee, A.

Banzer, P.

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Baryshnikova, K.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Belov, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Belov, P. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Blatt, R.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A, Pure Appl. Opt. 11(9), 094009 (2009).
[Crossref]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Bretner, I.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Campos, W. H.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Cardano, F.

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9(12), 776–778 (2015).
[Crossref]

Chantada, L.

Chaubey, S. K.

Chen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Cheskis, D.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Colombe, Y.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

de Carvalho, V. E.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Dogariu, A.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express 14(18), 8425–8433 (2006).
[Crossref] [PubMed]

Dutta Gupta, S.

Ebbesen, T. W.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Fernandez-Corbaton, I.

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Fölling, S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Fonseca, J. M.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Frimmer, M.

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Gao, D.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

Gao, L.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

García-Etxarri, A.

Genet, C.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

Ghosh, N.

Gillen, J. I.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Ginzburg, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Gómez-Medina, R.

Gong, Q.

Gorodetski, Y.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Greiner, M.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Haefner, D.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

Hasman, E.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

He, H.

Hebestreit, E.

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Higginbottom, D. B.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Hu, H.

Huang, Y.

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

Juan, M. L.

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Kleiner, V.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

Krasnok, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Kumar, G. V. P.

Kumar, V.

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Lei, B.

Leuchs, G.

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Li, C.-F.

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

Li, X.

Li, Y.

Ling, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Liu, W.

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Liu, Y.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

López, C.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Luo, H.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Ma, H.

Mansha, S.

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Markovich, D.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Marrucci, L.

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9(12), 776–778 (2015).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Mendes, J. B. S.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Miroshnichenko, A. E.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Molina-Terriza, G.

Moura-Melo, W. A.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Nechayev, S.

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

O’Connor, D.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Pan, D.

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

Peng, A.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Qin, Y.

Rajesh, D.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Rauschenbeutel, A.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Reimann, R.

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rocha, M. S.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Sáenz, J. J.

Samusev, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Scheffold, F.

Schwartz, C.

Shalin, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

Sharma, D. K.

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Shi, R.

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

Shitrit, N.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Shu, J.

Shu, W.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Soni, J.

Stein, B.

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

Sternklar, S.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Sukhov, S.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Vasista, A. B.

Vidal, X.

Volz, J.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Vorndran, M.

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Walser, S.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wei, H.

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

Wen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Wozniak, P.

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

Wurtz, G. A.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xie, W.

Xu, H.

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Zhang, J.

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (1)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological Insulator Particles As Optically Induced Oscillators: Toward Dynamical Force Measurements and Optical Rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Appl. Phys. Lett. (2)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A, Pure Appl. Opt. 11(9), 094009 (2009).
[Crossref]

Laser Photonics Rev. (1)

D. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

Light Sci. Appl. (1)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Nano Lett. (3)

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, “Weak measurement enhanced spin Hall effect of light for particle displacement sensing,” Nano Lett. 19(1), 422–425 (2018).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5(1), 5327 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9(12), 776–778 (2015).
[Crossref]

Nat. Phys. (1)

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin–orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Nature (1)

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462(7269), 74–77 (2009).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (2)

C.-F. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A (Coll. Park) 96(4), 043826 (2017).
[Crossref]

Phys. Rev. Lett. (9)

E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny, “Sensing Static Forces with Free-Falling Nanoparticles,” Phys. Rev. Lett. 121(6), 063602 (2018).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman, and T. W. Ebbesen, “Weak measurements of light chirality with a plasmonic slit,” Phys. Rev. Lett. 109(1), 013901 (2012).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse Kerker Scattering for Angstrom Localization of Nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett. 101(3), 030404 (2008).
[Crossref] [PubMed]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

D. Pan, H. Wei, L. Gao, and H. Xu, “Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits,” Phys. Rev. Lett. 117(16), 166803 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6(1), 22546 (2016).
[Crossref] [PubMed]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Science (5)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the unidirectional excitation of electromagnetic guided modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of spin Hall shift of scattered light from a core-shell nanoparticle. The spin Hall shift Δ SH (the red arrowed line) is perpendicular to the scattering plane. Due to the spin Hall effects, a far-field detector will assume the scattered light comes from the transversely displaced image, not from the real position.
Fig. 2
Fig. 2 (a) Norm of the Mie scattering coefficients (left horizontal axis) and transfer function T (right horizontal axis) versus the incident wavelength. (b) Contour plot of spin Hall shifts Δ SH as a function of the incident wavelength and scattering angle. Δ SH are enhanced up to two times of the incident wavelength, and show robust to the wavelength and scattering angle where the electric and magnetic dipoles are overlapped. The core-shell nanoparticle consists of a silver core (with radius a = 68 nm) and a dielectric shell (with radius b = 250 nm and the refractive index of 2.5).
Fig. 3
Fig. 3 Near-field distributions of a core-shell nanoparticle with dual behavior when the electric and magnetic dipoles have equal strength and oscillate in phase. (a) Normalized electric field. (b) Normalized magnetic field. (c) Circular polarization degree (CPD). The blue regions in (c) indicate the field is linear polarization as the result of strong spin-orbit interaction. The incident wavelength is 1250 nm, and other parameters are the same as those in Fig. 2.
Fig. 4
Fig. 4 (a) Norm of the Mie scattering coefficients and (b) spin Hall shifts for a core-shell nanoparticle with a dielectric core (radius a = 98 nm and refractive index of 1.5) and silver shell (with radius b = 105 nm). Extra enhanced spin Hall shifts emerge at the forward direction, where the electric quadrupole modes (a2) couple with electric dipole modes (a1). The inset shows the interference strength and phase differences of a1 and a2.
Fig. 5
Fig. 5 Contour plot of (a) the spin Hall shifts and (b) the corresponding diattenuation. The regions of enhanced spin Hall shifts coincide with that (gray region in (b)) of its diattenuation, where the full transformation of spin angular momentum to orbital angular momentum takes place. The core-shell nanoparticle’s parameters are the same as those in Fig. 4.
Fig. 6
Fig. 6 Field distributions for the cases of (a, c) quadrupole resonance and (b, d) dipole resonance. The patterns of circular polarization degree have similar characteristics with the corresponding Poynting vectors. The core-shell nanoparticle’s parameters are the same as those in Fig. 4.
Fig. 7
Fig. 7 (a) Forward (θ = 0°) and backward (θ = 180°) scattering efficiencies and (b) the normalized scattering intensities around the Fano resonance. The core-shell nanoparticle’s parameters are the same as those in Fig. 4.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E i L = n=1 E n ( M omn (1) i N emn (1) i M emn (1) + N omn (1) )
H i L = k ωμ n=1 E n ( M emn (1) +i N omn (1) +i M omn (1) + N emn (1) ),
( E shell L E core L )× e ^ r =( H shell L H core L )× e ^ r =0
( E i L + E s L E shell L )× e ^ r =( H i L + H s L H shell L )× e ^ r =0.
E s L = n=1 E n (i a n N emn (3) b n M omn (3) a n N omn (3) +i b n M emn (3) )
H s L = k ωμ n=1 E n (i b n N omn (3) + a n M emn (3) + b n N emn (3) +i a n M omn (3) ) ,
Δ SH = lim r r( S ϕ /| S r |) ϕ ^
Δ SH = σ k ( |Re( S 1 * [ n=1 (2n+1) a n π n ]+ S 2 [ n=1 (2n+1) b n π n ] * )| | S 1 | 2 +| S 2 | 2 )sinθ
S 1 (cosθ)= n=1 2n+1 n(n+1) [ a n π n (cosθ)+ b n τ n (cosθ)]
S 2 (cosθ)= n=1 2n+1 n(n+1) [ a n τ n (cosθ)+ b n π n (cosθ)].
D | a 1 + b 1 cosθ | 2 + | a 1 cosθ+ b 1 | 2 .
D|3 a 1 +5 a 2 cosθ | 2 +|3 a 1 cosθ+5 a 2 cos2θ | 2 .

Metrics