Abstract

We report the generation of strong, bright-beam intensity-difference squeezing down to measurement frequencies below 10 Hz. We generate two-mode squeezing in a four-wave mixing (4WM) process in Rb vapor, where the single-pass-gain nonlinear process does not require cavity locking and only relies on passive stability. We use diode laser technology and several techniques, including dual seeding, to remove the noise introduced by seeding the 4WM process as well as the background noise. Twin-beam intensity-difference squeezing down to frequencies limited only by the mechanical and atmospheric stability of the lab is achieved. These results should enable important low-frequency applications such as direct intensity-difference imaging with bright beams on integrating detectors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved measurement of two-mode quantum correlations using a phase-sensitive amplifier

Tian Li, Brian E. Anderson, Travis Horrom, Bonnie L. Schmittberger, Kevin M. Jones, and Paul D. Lett
Opt. Express 25(18) 21301-21311 (2017)

Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor

Zhongzhong Qin, Jietai Jing, Jun Zhou, Cunjin Liu, Raphael C. Pooser, Zhifan Zhou, and Weiping Zhang
Opt. Lett. 37(15) 3141-3143 (2012)

Polarization squeezing at the audio frequency band for the Rubidium D1 line

Xin Wen, Yashuai Han, Jinyu Liu, Jun He, and Junmin Wang
Opt. Express 25(17) 20737-20748 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref] [PubMed]
  2. T. L. S. Collaboration, “Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light,” Nat. Photon. 7, 613 (2013).
  3. A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
    [Crossref]
  4. C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
    [Crossref]
  5. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 (2007).
    [Crossref]
  6. A. M. Marino and P. D. Lett, “Absolute calibration of photodiodes with bright twin beams,” J. Mod. Opt. 58, 328–336 (2011).
    [Crossref]
  7. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  8. S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
    [Crossref]
  9. M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
    [Crossref] [PubMed]
  10. I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
    [Crossref]
  11. M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photon. 8, 104–155 (2016).
    [Crossref]
  12. L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
    [Crossref]
  13. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
    [Crossref] [PubMed]
  14. K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
    [Crossref]
  15. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
    [Crossref]
  16. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
    [Crossref]
  17. C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
    [Crossref] [PubMed]
  18. R. Ma, W. Liu, Z. Qin, X. Su, X. Jia, J. Zhang, and J. Gao, “Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor,” Opt. Lett. 43, 1243–1246 (2018).
    [Crossref] [PubMed]
  19. O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
    [Crossref]
  20. J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
    [Crossref] [PubMed]
  21. G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
    [Crossref] [PubMed]
  22. G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
    [Crossref]
  23. N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
    [Crossref]
  24. X. Wen, Y. Han, J. Liu, J. He, and J. Wang, “Polarization squeezing at the audio frequency band for the rubidium d1 line,” Opt. Express 25, 20737–20748 (2017).
    [Crossref] [PubMed]
  25. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
    [Crossref]
  26. Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
    [Crossref] [PubMed]
  27. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
    [Crossref]
  28. A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
    [Crossref]
  29. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
    [Crossref]
  30. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
    [Crossref] [PubMed]
  31. M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
    [Crossref]
  32. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [Crossref]
  33. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004), 2nd ed.
    [Crossref]
  34. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
    [Crossref] [PubMed]
  35. A. M. Marino, J. C. R. Stroud, V. Wong, R. S. Bennink, and R. W. Boyd, “Bichromatic local oscillator for detection of two-mode squeezed states of light,” J. Opt. Soc. Am. B 24, 335–339 (2007).
    [Crossref]
  36. N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
    [Crossref] [PubMed]
  37. J. Jia, W. Du, J. F. Chen, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Generation of frequency degenerate twin beams in Rb85 vapor,” Opt. Lett. 42, 4024–4027 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

X. Wen, Y. Han, J. Liu, J. He, and J. Wang, “Polarization squeezing at the audio frequency band for the rubidium d1 line,” Opt. Express 25, 20737–20748 (2017).
[Crossref] [PubMed]

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

J. Jia, W. Du, J. F. Chen, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “Generation of frequency degenerate twin beams in Rb85 vapor,” Opt. Lett. 42, 4024–4027 (2017).
[Crossref] [PubMed]

2016 (3)

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
[Crossref] [PubMed]

M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photon. 8, 104–155 (2016).
[Crossref]

2015 (1)

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

2013 (4)

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

T. L. S. Collaboration, “Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light,” Nat. Photon. 7, 613 (2013).

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

2012 (4)

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[Crossref]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

2011 (3)

2010 (1)

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
[Crossref]

2009 (1)

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

2008 (2)

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

2007 (6)

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
[Crossref] [PubMed]

A. M. Marino, J. C. R. Stroud, V. Wong, R. S. Bennink, and R. W. Boyd, “Bichromatic local oscillator for detection of two-mode squeezed states of light,” J. Opt. Soc. Am. B 24, 335–339 (2007).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 (2007).
[Crossref]

2006 (1)

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

2004 (2)

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

2002 (1)

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
[Crossref]

1980 (1)

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Ast, M.

M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
[Crossref] [PubMed]

Bache, M.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Bachor, H. A.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004), 2nd ed.
[Crossref]

Badoz, J.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Bauchrowitz, J.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

Bennink, R. S.

Berchera, I. R.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Blanchet, J.-L.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

Boccara, A. C.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Boyd, R. W.

Boyer, V.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Brambilla, E.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Buchler, B. C.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 (2007).
[Crossref]

Caspani, L.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Chekhova, M. V.

Chelkowski, S.

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Chen, J. F.

Chua, S. S. Y.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Collaboration, T. L. S.

T. L. S. Collaboration, “Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light,” Nat. Photon. 7, 613 (2013).

Corzo, N.

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Degiovanni, I. P.

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

Devaux, F.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

Di Trapani, P.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Dooley, K. L.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Dowling, J. P.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Du, W.

Embrey, C. S.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Fournier, D.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Furfaro, L.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

Gao, J.

Gatti, A.

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
[Crossref]

Genovese, M.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Goßler, S.

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

Gray, M. B.

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
[Crossref] [PubMed]

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Grosse, N.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Grote, H.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Haisch, C.

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[Crossref]

Han, Y.

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

He, J.

Horrom, T.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Hudelist, F.

Jedrkiewicz, O.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Jia, J.

Jia, X.

Jiang, Y.-K.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Jing, J.

Jones, K. M.

Khalaidovski, A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Kumar, A.

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

Lam, P. K.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
[Crossref] [PubMed]

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Lantz, E.

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

Lett, P. D.

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
[Crossref] [PubMed]

A. M. Marino and P. D. Lett, “Absolute calibration of photodiodes with bright twin beams,” J. Mod. Opt. 58, 328–336 (2011).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

Liu, C.

Liu, J.

Liu, W.

Lugiato, L. A.

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
[Crossref]

Ma, R.

Marino, A. M.

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19, 21358–21369 (2011).
[Crossref] [PubMed]

A. M. Marino and P. D. Lett, “Absolute calibration of photodiodes with bright twin beams,” J. Mod. Opt. 58, 328–336 (2011).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

A. M. Marino, J. C. R. Stroud, V. Wong, R. S. Bennink, and R. W. Boyd, “Bichromatic local oscillator for detection of two-mode squeezed states of light,” J. Opt. Soc. Am. B 24, 335–339 (2007).
[Crossref]

McClelland, D. E.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
[Crossref] [PubMed]

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

McCormick, C. F.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[Crossref]

McKenzie, K.

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequencies,” Appl. Opt. 46, 3389–3395 (2007).
[Crossref] [PubMed]

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Meda, A.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Meinders, M.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

Mikhailov, E. E.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Mow-Lowry, C. M.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Müller-Ebhardt, H.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

Nunley, H.

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

Olivares, S.

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

Ou, Z. Y.

Petrov, P. G.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Pooser, R. C.

Qin, Z.

Ralph, T. C.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004), 2nd ed.
[Crossref]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 (2007).
[Crossref]

Ruo-Berchera, I.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
[Crossref]

Samantaray, N.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

Schnabel, R.

M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Shaddock, D. A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Singh, R.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

Slutsky, J.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Stefszky, M. S.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

Steinlechner, S.

M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
[Crossref] [PubMed]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

Stroud, J. C. R.

Su, X.

Traina, P.

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

Turnbull, M. T.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Wang, J.

Wen, X.

Whitcomb, S. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Wong, V.

Yuan, C.-H.

Zhang, J.

Zhang, W.

Zhou, J.

Zhou, L.

Zhou, Z.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: Detection by the mirage effect,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Class. Quantum Gravity (2)

K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, “Squeezed state generation for interferometric gravitational-wave detection,” Class. Quantum Gravity 23, S245 (2006).
[Crossref]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29, 145015 (2012).
[Crossref]

J. Mod. Opt. (1)

A. M. Marino and P. D. Lett, “Absolute calibration of photodiodes with bright twin beams,” J. Mod. Opt. 58, 328–336 (2011).
[Crossref]

J. Opt. B: Quantum Semiclassical Opt. (1)

L. A. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Light. Sci. & Appl. (1)

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field microscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Meas. Sci. Technol. (1)

C. Haisch, “Photoacoustic spectroscopy for analytical measurements,” Meas. Sci. Technol. 23, 012001 (2012).
[Crossref]

Nat. Photon. (3)

T. L. S. Collaboration, “Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light,” Nat. Photon. 7, 613 (2013).

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photon. 7, 626 (2013).
[Crossref]

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4, 227 (2010).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 (2007).
[Crossref]

New J. Phys. (1)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (5)

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

A. Kumar, H. Nunley, and A. M. Marino, “Observation of spatial quantum correlations in the macroscopic regime,” Phys. Rev. A 95, 053849 (2017).
[Crossref]

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86, 023803 (2012).
[Crossref]

I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry,” Phys. Rev. A 92, 053821 (2015).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Phys. Rev. Lett. (9)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[Crossref] [PubMed]

O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101, 233604 (2008).
[Crossref] [PubMed]

G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of sub-shot-noise spatial correlations without background subtraction,” Phys. Rev. Lett. 102, 213602 (2009).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. Ast, S. Steinlechner, and R. Schnabel, “Reduction of classical measurement noise via quantum-dense metrology,” Phys. Rev. Lett. 117, 180801 (2016).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

Other (1)

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004), 2nd ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Level diagram of the 4WM process in 85Rb. The broadened upper level indicates the Doppler broadening of the transition. b) Experimental set-up. BS indicates a non-polarizing beamsplitter; the remaining beamsplitters are polarizing beamsplitters. The dashed box indicates a polarization spectroscopy feedback lock to the laser frequency. c) Sketches of the three methods of reducing noise from the seed of the 4WM process: Method 1 - attenuating the amplified seeded beam using a half-wave plate and polarizing beamsplitter to balance the conjugate. Method 2 - the amplified seeded beam balanced by its conjugate and a second seed that goes around the gain. Method 3 - a dual-seeded process, with the two amplified seeded beams and their conjugates balancing on the two detectors.
Fig. 2
Fig. 2 Noise power versus measurement frequency for different powers in the seeding beams. The 4WM gain ≈ 20 in each case (pump power = 420 mW, cell temperature=128 ° C, Δ = 1.2 GHz, δ = −2 MHz, pump-probe angle of 0.5(1) degrees). The upper (red) curves show the measured shot noise and twin-beam intensity-difference squeezing for a seed power of 6.4 μW (output power ≈ 129 μW) and lower (blue) curves show the shot noise level and intensity-difference squeezing for a seed power of 0.9 μW (output power ≈ 17 μW). The resolution bandwidth (RBW) is 100 Hz and the video bandwidth (VBW) is 1 Hz for these measurements. The output beam powers here are unbalanced due to the injected seed beam. For equivalent conditions otherwise, the lower seed power results in the squeezing being extended to lower frequencies. The electronic noise is about 20 dB below the shot noise level and is not subtracted from these traces.
Fig. 3
Fig. 3 Spectra of shot noise, squeezing, and scattered pump light versus frequency, comparing two different phase-matching angles. The phase-matching angle determines the gain, but also the amount of scattered pump light that is collected, leading to low frequency noise that limits the squeezing at small angles. In this case the 4WM process is dual-seeded (Method 3). The seed laser is locked at a one-photon detuning of 1.3 GHz and frequency-narrowed in each case, and no delay lines are inserted in any of the beams for these measurements. The two-photon detuning is kept at −2 MHz and the pump power is 750 mW. (a) The plotted spectra for a phase matching angle of 0.3(1) degrees are the shot noise measurement (red), intensity-difference squeezing (blue), and collected scattered pump light (black). There is a gain of 5 and a cell stem temperature of 91°C. (b) The plotted spectra for a phase matching angle of 0.5(1) degrees are the shot noise measurement (red), intensity-difference squeezing (blue), and collected scattered pump light (black). There is a gain of 10 and a cell stem temperature of 97°C. All uncertainties are one standard deviation statistical uncertainties unless otherwise noted. The electronic noise is not subtracted from these traces, which limits the lower pump noise trace above 100 Hz. The RBW is 0.24 Hz for frequencies below 400 Hz, and progressively larger for higher frequencies, up to 62 Hz above 6 kHz.
Fig. 4
Fig. 4 Spectra of shot noise and intensity-difference squeezing versus frequency, comparing seeding techniques and laser locking. The 1-photon detuning is 1.3 GHz, the gain is 10, the cell stem temperature is 97 °C, and the phase-matching angle is 0.5(1) degrees. In (a) the seed laser is unlocked, and in (b) the laser is locked and frequency-narrowed. In each case the traces are the shot noise measurement (red); intensity-difference squeezing with an attenuated probe beam (Method 1, blue); intensity-difference squeezing with an extra probe seed added to the conjugate beam at the detector (Method 2, green); intensity-difference squeezing with dual probe seeds (Method 3, black). There is a delay line for the conjugate beams in each case, which was included for ease of combining beams on the detectors. The measurements were taken with a box enclosing the beam paths after the 4WM cell. The electronic noise, about 20 dB below the shot noise, is not subtracted from these traces. The RBW is 0.24 Hz for frequencies below 400 Hz, and progressively larger for higher frequencies, up to 62 Hz above 6 kHz. A running average over 11 points is used to smooth the data. Note the change of scale on the axes between panels (a) and (b).