Abstract

Scalable and repeatable determinations of continuous wave (CW) laser-induced damage thresholds are required to develop materials for applications ranging from deformable mirrors to momentum transfer. Current standards assume sample geometries and beam conditions where CW damage thresholds are constant in linear power density, depend strongly on substrate thermal conductivity, and are insensitive to environmental conditions. In this work, the CW laser response of thin PET films with a reflective Al/MgF2 coating are experimentally assessed over a range of beam diameters and irradiances. The laser-induced damage threshold decreases with increased exposure time down to a temporally-independent irradiance, decreases with increased beam diameter to an irradiance that is independent of spot size, and depends on radiative and convective cooling. Models are used to define the minimum spot size and exposure time required to achieve such constant damage threshold irradiances for thin reflectors.

Full Article  |  PDF Article
OSA Recommended Articles
Thermally ruggedized ITO transparent electrode films for high power optoelectronics

Jae-Hyuck Yoo, Manyalibo Matthews, Phil Ramsey, Antonio Correa Barrios, Austin Carter, Andrew Lange, Jeff Bude, and Selim Elhadj
Opt. Express 25(21) 25533-25545 (2017)

High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength

Liping Peng, Yuan’an Zhao, Xiaofeng Liu, Yonggang Liu, Zhaoliang Cao, Meiping Zhu, Jianda Shao, Ruijin Hong, Chunxian Tao, and Dawei Zhang
Opt. Mater. Express 9(2) 911-922 (2019)

Laser Induced Damage of Optical Elements–a Status Report

Alexander J. Glass and Arthur H. Guenther
Appl. Opt. 12(4) 637-649 (1973)

References

  • View by:
  • |
  • |
  • |

  1. “Small Solar Power Sail Demonstrator IKAROS,” (JAXA, 2015) http://global.jaxa.jp/projects/sat/ikaros .
  2. “Breakthrough Iniatives,” (2018) https://breakthroughinitiatives.org/Initiative/3 .
  3. H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
    [Crossref] [PubMed]
  4. J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
    [Crossref]
  5. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995).
    [Crossref] [PubMed]
  6. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008).
    [Crossref] [PubMed]
  7. ISO, “21254-1:2011, Lasers and laser-related equipment–Test methods for laser-induced damage threshold – Part 1: Definitions and general principles,” (2011).
  8. J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
    [Crossref]
  9. F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
    [Crossref]
  10. M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
    [Crossref]
  11. R. M. Wood, Laser-induced Damage of Optical Materials (Institute of Physics, 2003).
  12. S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
    [Crossref]
  13. “Damage Thresholds,” (Thor Labs) https://www.thorlabs.com/tutorials.cfm?tabID=762473b5-84ee-49eb-8e93-375e0aa803fa .
  14. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1959).
  15. A. International, “Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques,” (West Conshohocken, PA, 2013).
  16. S. H. F. Sakuma, “Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector,” in Temperature: Its Measurement and Control in Science and Industry, Vol. 5, J. F. Schooley, ed. (AIP), pp. 421–427.
  17. ISO, “21254-2:2011, Lasers and laser-related equipment–Test methods for laser-induced damage threshold – Part 2: Threshold determination,” (2011).
  18. COMSOL Multiphysics, www.comsol.com , COMSOL AB, Stockholm, Sweden.

2019 (1)

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

2018 (1)

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

2008 (1)

2007 (1)

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

1995 (1)

1980 (1)

J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
[Crossref]

1976 (1)

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

1975 (1)

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

Allen, R.

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

Atwater, H. A.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Bartoli, F.

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

Bartoli, F. J.

J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
[Crossref]

Chen, T.

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

Chiu, C. E.

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

Coburn, D.

Dainty, C.

Dalimier, E.

Daly, E.

Davoyan, A. R.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Devaney, N.

Esterowitz, L.

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

Farrell, T.

Gerzeski, R. H.

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

Ilic, O.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Jariwala, D.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Kruer, M.

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

Kruer, M. R.

J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
[Crossref]

Laurent, F.

Liu, C.

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

Mackey, D.

Mackey, R.

Meyer, J. R.

J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
[Crossref]

Pitz, J.

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

Roy, A. K.

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

Sarro, P. M.

Sherrott, M. C.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Sihn, S.

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

Su, G. J.

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

Vdovin, G.

Vernon, J. P.

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

Wang, J.

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

Went, C. M.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Whitney, W. S.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Wong, J.

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Appl. Opt. (2)

Compos. Struct. (1)

S. Sihn, J. Pitz, R. H. Gerzeski, A. K. Roy, and J. P. Vernon, “Experimentally-validated computational model for temperature evolution within laser heated fiber-reinforced polymer matrix composites,” Compos. Struct. 207, 966–973 (2019).
[Crossref]

ETRI J. (1)

J. Wang, T. Chen, C. Liu, C. E. Chiu, and G. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J. 29(6), 817–819 (2007).
[Crossref]

J. Appl. Phys. (2)

F. Bartoli, L. Esterowitz, M. Kruer, and R. Allen, “Thermal modelling of laser damage in 8–14‐μm HgCdTe photoconductive and PbSnTe photovoltaic detectors,” J. Appl. Phys. 46(10), 4519–4525 (1975).
[Crossref]

M. Kruer, L. Esterowitz, F. Bartoli, and R. Allen, “Thermal analysis of laser damage in thin‐film photoconductors,” J. Appl. Phys. 47(7), 2867–2874 (1976).
[Crossref]

Nat. Mater. (1)

H. A. Atwater, A. R. Davoyan, O. Ilic, D. Jariwala, M. C. Sherrott, C. M. Went, W. S. Whitney, and J. Wong, “Materials challenges for the Starshot lightsail,” Nat. Mater. 17(10), 861–867 (2018).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

J. R. Meyer, F. J. Bartoli, and M. R. Kruer, “Optical heating in semiconductors,” Phys. Rev. B Condens. Matter 21(4), 1559–1568 (1980).
[Crossref]

Other (10)

“Damage Thresholds,” (Thor Labs) https://www.thorlabs.com/tutorials.cfm?tabID=762473b5-84ee-49eb-8e93-375e0aa803fa .

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1959).

A. International, “Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques,” (West Conshohocken, PA, 2013).

S. H. F. Sakuma, “Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector,” in Temperature: Its Measurement and Control in Science and Industry, Vol. 5, J. F. Schooley, ed. (AIP), pp. 421–427.

ISO, “21254-2:2011, Lasers and laser-related equipment–Test methods for laser-induced damage threshold – Part 2: Threshold determination,” (2011).

COMSOL Multiphysics, www.comsol.com , COMSOL AB, Stockholm, Sweden.

“Small Solar Power Sail Demonstrator IKAROS,” (JAXA, 2015) http://global.jaxa.jp/projects/sat/ikaros .

“Breakthrough Iniatives,” (2018) https://breakthroughinitiatives.org/Initiative/3 .

R. M. Wood, Laser-induced Damage of Optical Materials (Institute of Physics, 2003).

ISO, “21254-1:2011, Lasers and laser-related equipment–Test methods for laser-induced damage threshold – Part 1: Definitions and general principles,” (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic representation of the main features of the laser beam path and representative beam profile cross-sections at each stage. (b) Digital photograph of part of the experimental setup from behind the sample.
Fig. 2
Fig. 2 Backside temperature profile of 5 samples at 5 different beam diameters (d) at an irradiance of 13 W/cm2. The images on the top row are single frames from IR camera video taken at 0.3 s after the laser was turned on. Each image is 3.6 cm wide and 3.8 cm tall. The images on the bottom row show the progression over time of the temperature profile across the center of the sample.
Fig. 3
Fig. 3 (a) Log-log plot of the irradiance required for burn-through vs exposure time for all samples that failed. The solid and dashed lines are plots of Eq. (6) for the indicated values of α. (b) Plot of the measured average steady-state temperature realized vs beam irradiance for all samples that did not fail under laser irradiation. The solid lines are linear fits of the data. In both plots the data sets differ by beam diameter as noted in the legend in (b).
Fig. 4
Fig. 4 (a) The fraction of samples that failed for each beam diameter. The solid lines are a piecewise-function fit. The time-independent damage threshold versus beam diameter expressed in (b) irradiance, (c) linear power density, and (d) power.
Fig. 5
Fig. 5 Log-log plot of the irradiance vs time to failure at a beam diameter of 1.5 cm. The markers are the measured values and the solid lines are plots of Eq. (6). The data sets differ by the presence of N2 gas flow and therefore convection coefficient.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T( ϕ,t )= T 0 + α ϕ k [ 1exp(   t /t ) π t t +erfc( t t ) ]
t = r 2 4k c p ρ
ϕ DT, = k ( T C T 0 ) α .
T( I,t )= T air + α I 2 h eff +( T 0 T air α I 2 h eff )exp( t t )
t = L 2 h eff c p ρ
I DT ( t )= 2  h eff  ( T C T air ) α( 1 e t/ t ) if T 0 = T air .
I DT, = 2  h eff  ( T C T air ) α
t 1% = 4.6  c p  L ρ 2 h eff .
r 2 Lk h eff .
h eff ( T in K )= h avg +( T 3 + T 2 T air +T T air 2 + T air 3 ) ε avg σ