Abstract

This paper presents a simple, linearized fiber-optic link that is capable of realizing a high spurious free dynamic range (SFDR) at different input RF signal frequencies without the need of readjusting system parameters. The link is based on a commercial dual-polarization modulator followed by a linear polarizer. The third-order nonlinearity at the third-order intermodulation distortion frequency can be cancelled by designing the angle of the linear polarizer. No electrical component is involved in the linearization process. The high SFDR performance is theoretically analyzed, simulated using photonic simulation software, and experimentally verified. Experimental verification of the dual-polarization modulator-based linearized fiber-optic link shows that a high SFDR of more than 124 dB⋅Hz4/5 is obtained at different input RF signal frequencies over a 2-18 GHz bandwidth. An SFDR of 127.3 dB⋅Hz4/5 is also demonstrated with the use of an optical amplifier to increase the link output average optical power, which is among the highest reported SFDRs measured in a fiber-optic link.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microwave photonic mixer with high spurious-free dynamic range

Ali Altaqui, Erwin H. W. Chan, and Robert A. Minasian
Appl. Opt. 53(17) 3687-3695 (2014)

Dynamic range improvement in analog photonic link by intermodulation-compensation receiver

Feifei Yin, Dan Tu, Xiaodong Liang, Yitang Dai, Junyi Zhang, Jianqiang Li, and Kun Xu
Opt. Express 23(9) 11242-11249 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
    [Crossref]
  2. W. Chang, RF photonic technology in optical fiber links, (Cambridge University, 2002).
  3. G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photonics Technol. Lett. 8(9), 1273–1275 (1996).
    [Crossref]
  4. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
    [Crossref]
  5. Z. Chen, L. Yan, W. Pan, B. Luo, X. Zou, Y. Guo, H. Jiang, and T. Zhou, “SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity,” Opt. Express 21(18), 20999–21009 (2013).
    [Crossref] [PubMed]
  6. Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
    [Crossref]
  7. D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express 24(10), 11009–11016 (2016).
    [Crossref] [PubMed]
  8. E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” 2016 IEEE International Topical Meeting on Microwave Photonics (MWP) 265–268 (2016).
  9. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
    [Crossref]
  10. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
    [Crossref] [PubMed]
  11. D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photonics Conference 2012, 13149985 (2012).
  12. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).
  13. Y. Dai, X. Liang, F. Yin, J. Zhang, J. Li, W. Li, and K. Xu, “Feedforward linearization for RF photonic link with broadband adjustment-free operation,” Opt. Express 25(17), 20770–20779 (2017).
    [Crossref] [PubMed]
  14. B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photonics Technol. Lett. 19(10), 729–731 (2007).
    [Crossref]
  15. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
    [Crossref]
  16. B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
    [Crossref]
  17. H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
    [Crossref]
  18. G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
    [Crossref]
  19. PlugTech Ultra High Precision MZM Bias Controller (MBC-NULL-03) data sheet. [Online]. Available: www.plugtech.hk .
  20. N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
    [Crossref]
  21. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]

2017 (2)

Y. Dai, X. Liang, F. Yin, J. Zhang, J. Li, W. Li, and K. Xu, “Feedforward linearization for RF photonic link with broadband adjustment-free operation,” Opt. Express 25(17), 20770–20779 (2017).
[Crossref] [PubMed]

N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
[Crossref]

2016 (1)

2014 (1)

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

2013 (2)

2012 (1)

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

2010 (1)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

2009 (1)

2007 (1)

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photonics Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

2006 (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

2002 (1)

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

1997 (1)

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

1996 (1)

G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photonics Technol. Lett. 8(9), 1273–1275 (1996).
[Crossref]

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

1994 (1)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

Ackerman, E.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photonics Technol. Lett. 8(9), 1273–1275 (1996).
[Crossref]

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Chen, H.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Chen, J.

Chen, M.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Chen, Z.

Cox, C.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Cui, Y.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Dai, J.

Dai, Y.

Fard, A. M.

D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photonics Conference 2012, 13149985 (2012).

Frigo, N. J.

N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
[Crossref]

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

Guo, Y.

Haas, B. M.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photonics Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

Helkey, R.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

Hraimel, B.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
[Crossref]

Hutchinson, M. N.

N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
[Crossref]

Jalali, B.

D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photonics Conference 2012, 13149985 (2012).

Jiang, H.

Kim, H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

Lam, D.

D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photonics Conference 2012, 13149985 (2012).

Li, J.

Li, P.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Li, W.

Liang, X.

Lin, J.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Liu, T.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

Luo, B.

Lv, Q.

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Masella, B.

Murphy, T. E.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photonics Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

Nie, Q.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

O’Donnell, F. J.

G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photonics Technol. Lett. 8(9), 1273–1275 (1996).
[Crossref]

Pan, S.

Pan, W.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Shen, D.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

Shi, R.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Williams, C. R. S.

N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
[Crossref]

Xie, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Xu, K.

Xu, T.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

Yan, L.

Yang, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

Yin, F.

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhang, J.

Zhang, X.

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
[Crossref]

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, T.

Zhu, D.

Zou, X.

IEEE Photonics J. (1)

Y. Cui, Y. Dai, F. Yin, Q. Lv, J. Li, K. Xu, and J. Lin, “Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital postprocessing,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photonics Technol. Lett. 19(10), 729–731 (2007).
[Crossref]

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photonics Technol. Lett. 14(3), 298–300 (2002).
[Crossref]

G. E. Betts and F. J. O’Donnell, “Microwave analog optical links using suboctave linearized modulators,” IEEE Photonics Technol. Lett. 8(9), 1273–1275 (1996).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Direct-detection analog optical links,” IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997).
[Crossref]

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994).
[Crossref]

B. Hraimel, X. Zhang, T. Liu, T. Xu, Q. Nie, and D. Shen, “Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive x-cut Mach–Zehnder modulator,” IEEE Trans. Microw. Theory Tech. 60(10), 3328–3338 (2012).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (1)

N. J. Frigo, M. N. Hutchinson, and C. R. S. Williams, “Evaluating system penalties in radio frequency photonic links due to photodiode nonlinearity,” Opt. Eng. 56(10), 100501 (2017).
[Crossref]

Opt. Express (4)

Other (5)

D. Lam, A. M. Fard, and B. Jalali, “Digital broadband linearization of analog optical links,” IEEE Photonics Conference 2012, 13149985 (2012).

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” Proceedings of International Topical Meeting on Microwave Photonics, 68–71 (2012).

W. Chang, RF photonic technology in optical fiber links, (Cambridge University, 2002).

PlugTech Ultra High Precision MZM Bias Controller (MBC-NULL-03) data sheet. [Online]. Available: www.plugtech.hk .

E. I. Ackerman, G. E. Betts, and C. H. Cox, “Inherently broadband linearized modulator for high-SFDR, low-NF microwave photonic links,” 2016 IEEE International Topical Meeting on Microwave Photonics (MWP) 265–268 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Topology of the dual-polarization modulator based linearized FOL. (b) The polarization states of the light passing though the top () and bottom () arm of the dual-polarization modulator and at the output of the polarizer ().
Fig. 2
Fig. 2 (a) The optical spectrums at the linear polarizer output produced by the light passing through MZM1 and MZM2. (b) Photodetector output RF spectrum showing the RF signal and the IMD3 generated by beating between various frequency components.
Fig. 3
Fig. 3 The SFDR and the polarizer angle required to cancel the third order nonlinearity in the IMD3 versus the modulator extinction ratio when MZM1 is biased at the quadrature point (dashed) and close to the null point that results in the highest SFDR (solid).
Fig. 4
Fig. 4 Optimal bias angle of MZM1 that results in the highest SFDR performance for the dual-polarization modulator based linearized FOL versus MZM1 extinction ratio.
Fig. 5
Fig. 5 Simulated dual-polarization modulator based linearized FOL output RF signal power, and IMD3 power for different polarizer angles. Also shown are the system output noise power for a 1 Hz noise bandwidth and a 1 MHz noise bandwidth. (a) Increasing the polarizer angle from the optimal value. (b) Decreasing the polarizer angle from the optimal value.
Fig. 6
Fig. 6 Output electrical power of the dual-polarization modulator based linearized FOL when MZM1 was biased (a) at the quadrature point and (b) close to the null point. Output electrical power of a conventional quadrature-biased MZM based FOL for (c) 2.5 dBm and (d) −0.7 dBm average optical power into the photodetector. The resolution bandwidth of the electrical signal analyzer was 10 Hz.
Fig. 7
Fig. 7 Measured output RF signal power (square) and IMD3 power (circle) of the dual-polarization modulator based linearized FOL at different input RF signal powers when MZM1 was biased (a) at the quadrature point and (b) close to the null point. The corresponding measurement for a conventional quadrature-biased MZM based FOL with (c) 2.5 dBm and (d) −0.7 dBm average optical power into the photodetector. The measured noise floor is −165.5 dBm/Hz and −168.9 dBm/Hz respectively.
Fig. 8
Fig. 8 The dual-polarization modulator based linearized FOL SFDRs measured at different input RF signal frequencies when MZM1 was biased close to the null point.
Fig. 9
Fig. 9 Measured output RF signal power (square) and IMD3 power (circle) of the dual-polarization modulator based linearized FOL at different input RF signal powers when MZM1 was biased close to the null point and an EDFA was used to increase the output average optical power to 3.9 dBm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E MZ M 1 ,out = 2 4 E in t ff e j ω c t ( e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b +γ e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b )
E MZ M 2 ,out = 2 4 E in t ff e j ω c t ( 1+γ )
E out = 2 4 E in t ff e j ω c t { ( e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b +γ e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b ) z ^ +( 1+γ ) x ^ }
E out,polarizer = 2 4 E in t ff e j ω c t { ( e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b +γ e j( β RF sin( ω 1 t )+ β RF sin( ω 2 t ) ) e j β b )cos( θ ) +( 1+γ )sin( θ ) }
e jasin( ωt ) = n= + J n ( a ) e jnωt
E out,polarizer = 2 4 E in t ff e j ω c t { ( [ J 0 ( β RF )+ J 1 ( β RF ) e j ω 1 t + J 1 ( β RF ) e j ω 1 t + J 2 ( β RF ) e j2 ω 1 t + J 2 ( β RF ) e j2 ω 1 t ] [ J 0 ( β RF )+ J 1 ( β RF ) e j ω 2 t + J 1 ( β RF ) e j ω 2 t + J 2 ( β RF ) e j2 ω 2 t + J 2 ( β RF ) e j2 ω 2 t ] e j β b +γ[ J 0 ( β RF ) J 1 ( β RF ) e j ω 1 t J 1 ( β RF ) e j ω 1 t + J 2 ( β RF ) e j2 ω 1 t + J 2 ( β RF ) e j2 ω 1 t ] [ J 0 ( β RF ) J 1 ( β RF ) e j ω 2 t J 1 ( β RF ) e j ω 2 t + J 2 ( β RF ) e j2 ω 2 t + J 2 ( β RF ) e j2 ω 2 t ] e j β b )cos( θ ) +( 1+γ )sin( θ ) }
I out = E out,polarizer E out,polarizer *
I out,RF =- 1 2 E in 2 t ff { ABsin( ba ) cos 2 ( θ ) J 0 ( β RF ) J 0 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) +B( 1+γ )sin( b )sin( θ )cos( θ ) J 0 ( β RF ) J 1 ( β RF ) }
I out,IMD3 =- 1 2 E in 2 t ff { ABsin( ba ) cos 2 ( θ )[ J 2 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 0 ( β RF ) + J 1 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) + J 0 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 2 ( β RF ) + J 1 ( β RF ) J 1 ( β RF ) J 2 ( β RF ) J 1 ( β RF ) + J 3 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) + J 0 ( β RF ) J 1 ( β RF ) J 2 ( β RF ) J 2 ( β RF ) +...... ] +B( 1+γ )sin( b )sin( θ )cos( θ ) J 2 ( β RF ) J 1 ( β RF ) }
A e ja = γ 2 +2γcos( 2 β b )+1 e j tan 1 [ tan( β b ) ( 1γ ) ( 1+γ ) ]
B e jb = γ 2 2γcos( 2 β b )+1 e j tan 1 [ tan( β b ) ( 1+γ ) ( 1γ ) ]
ABsin( ba ) cos 2 ( θ )[ J 2 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 0 ( β RF ) + J 1 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) + J 0 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 2 ( β RF ) ] +B( 1+γ )sin( b )sin( θ )cos( θ ) J 2 ( β RF ) J 1 ( β RF )=0
tan( θ )= 4Asin( ba ) ( 1+γ )sin( b )
P out,RF = 1 8 P in 2 2 t ff 2 R o { ABsin( ba ) cos 2 ( θ ) J 0 ( β RF ) J 0 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) +B(1+γ)sin( b )sin( θ )cos( θ ) J 0 ( β RF ) J 1 ( β RF ) } 2
P out,IMD3 = 1 8 P in 2 2 t ff 2 R o { ABsin( ba ) cos 2 ( θ )[ J 2 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 0 ( β RF ) + J 1 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) + J 0 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 2 ( β RF ) + J 1 ( β RF ) J 1 ( β RF ) J 2 ( β RF ) J 1 ( β RF ) + J 3 ( β RF ) J 1 ( β RF ) J 0 ( β RF ) J 1 ( β RF ) + J 0 ( β RF ) J 1 ( β RF ) J 2 ( β RF ) J 2 ( β RF ) +...... ] +B( 1+γ )sin( b )sin( θ )cos( θ ) J 2 ( β RF ) J 1 ( β RF ) } 2
I avg = 1 8 P in t ff | A e ja cos( θ ) J 0 ( β RF ) J 0 ( β RF )+sin( θ )( 1+γ ) | 2