Abstract

In this work, we report multispectral superconducting nanowire single photon detectors (SNSPDs) that can simultaneously detect single photons at multiple wavelengths with high efficiency. The superconducting nanowires are fabricated on an all-dielectric mirror consisting of two quarter-wave stack reflectors with separated central wavelengths. The unique optical structure results in serially coupled optical cavities, leading to multiple resonant absorption bands that are utilized for high-efficiency single photon detection. The fabricated detector shows system detection efficiencies of >80% at the three target wavelengths of 1550 nm, 1310 nm, and 1064 nm. The multispectral detector may eliminate the need for multiple SNSPDs for different wavelengths in a system, potentially resulting in a reduction in size, weight, and power, as well as in the cost of the overall detection system. The detector may also find interesting use for applications such as multispectral ranging or imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler

Shigehito Miki, Taro Yamashita, Hirotaka Terai, and Zhen Wang
Opt. Express 21(8) 10208-10214 (2013)

Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity

Xiaoming Chi, Kai Zou, Chao Gu, Julien Zichi, Yuhao Cheng, Nan Hu, Xiaojian Lan, Shufan Chen, Zuzeng Lin, Val Zwiller, and Xiaolong Hu
Opt. Lett. 43(20) 5017-5020 (2018)

Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency

Hao Li, Lu Zhang, Lixing You, Xiaoyan Yang, Weijun Zhang, Xiaoyu Liu, Sijing Chen, Zhen Wang, and Xiaoming Xie
Opt. Express 23(13) 17301-17308 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
    [Crossref] [PubMed]
  2. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  3. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [Crossref] [PubMed]
  4. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  5. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref] [PubMed]
  6. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  7. H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
    [Crossref] [PubMed]
  8. H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
    [Crossref] [PubMed]
  9. D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
    [Crossref] [PubMed]
  10. L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
    [Crossref] [PubMed]
  11. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
    [Crossref] [PubMed]
  12. L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
    [Crossref]
  13. Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
  14. L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
    [Crossref]
  15. H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
    [Crossref] [PubMed]
  16. W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
    [Crossref]
  17. N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  18. X. Ren, Y. Altmann, R. Tobin, A. Mccarthy, S. Mclaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26(23), 30146–30161 (2018).
    [Crossref] [PubMed]
  19. M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
    [Crossref]
  20. M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
    [Crossref]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of cthe rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  22. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
    [Crossref] [PubMed]
  23. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
    [Crossref] [PubMed]
  24. X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
    [Crossref] [PubMed]
  25. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
    [Crossref]
  26. K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
    [Crossref]

2018 (1)

2017 (4)

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[Crossref] [PubMed]

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

2016 (4)

2015 (2)

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

2014 (2)

2013 (6)

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

2012 (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

2011 (1)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

2010 (1)

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
[Crossref]

2006 (1)

2004 (1)

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

1995 (1)

Abedin, M. N.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
[Crossref]

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Altmann, Y.

Anant, V.

Antipov, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Bandara, S.

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

Bhat, I.

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Bulgarini, G.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Buller, G. S.

Cavaillès, A.

Chen, J.

Chen, S.

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

Divochiy, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Dobrovolskiy, S.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Dorenbos, S. D.

Dorenbos, S. N.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Gaylord, T. K.

Gemmell, N. R.

Gérard, J. M.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Goltsman, G.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Grann, E. B.

Gunapala, S. D.

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Hadfield, R. H.

Hagen, N. A.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hu, X.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Huang, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

Huang, K.

Jiang, M.

Kang, L.

Kerman, A. J.

Kudenov, M. W.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Laurat, J.

Le Jeannic, H.

Li, H.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Li, M.

Li, Y.

Li, Z.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, B.

Liu, D.

Liu, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Lv, C.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

Marsili, F.

H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Mccarthy, A.

Mclaughlin, S.

Meng, W.

Miki, S.

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Mlynczak, M. G.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
[Crossref]

Moharam, M. G.

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Monroy, E.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Morin, O.

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

Nam, S. W.

H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Patterson, M. S.

Peng, W.

Pommet, D. A.

Redaelli, L.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Refaat, T. F.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
[Crossref]

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Ren, X.

Rosfjord, K. M.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shaw, M. D.

H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shibata, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Shimizu, K.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Smirnov, K.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Takesue, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Tang, K.

Tanner, M. G.

Terai, H.

Tobin, R.

Tokura, Y.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Vachtomin, Y.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41(22), 5341–5344 (2016).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Voronov, B. M.

Wang, Y.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

Wang, Z.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilson, B. C.

Wu, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Wu, P.

Wu, Z.

Xiao, Y.

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Xie, X.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Xiong, Y.

Xue, L.

Yabuno, M.

Yamashita, T.

Yang, J. K. W.

Yang, X.

You, L.

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Zhai, D.

Zhang, L.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
[Crossref] [PubMed]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

Zhang, Z.

Zhou, H.

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

Zwiller, V.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

Appl. Phys. Express (2)

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8(2), 022501 (2015).
[Crossref]

Appl. Phys. Lett. (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11(5), 2048–2053 (2011).
[Crossref] [PubMed]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Opt. Eng. (1)

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (10)

X. Ren, Y. Altmann, R. Tobin, A. Mccarthy, S. Mclaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26(23), 30146–30161 (2018).
[Crossref] [PubMed]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency,” Opt. Express 23(13), 17301–17308 (2015).
[Crossref] [PubMed]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24(4), 3535–3542 (2016).
[Crossref] [PubMed]

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22(13), 16267–16272 (2014).
[Crossref] [PubMed]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, “Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission,” Proc. SPIE 7808, 78080V (2010).
[Crossref]

M. N. Abedin, T. F. Refaat, I. Bhat, Y. Xiao, S. Bandara, and S. D. Gunapala, “Progress of multicolor single detector to detector array development for remote sensing,” Proc. SPIE 5543, 239–248 (2004).
[Crossref]

Sci. China Phys. Mech. (1)

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60(12), 120314 (2017).
[Crossref]

Supercond. Sci. Technol. (2)

L. You, H. Li, W. Zhang, X. Yang, L. Zhang, S. Chen, H. Zhou, Z. Wang, and X. Xie, “Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths,” Supercond. Sci. Technol. 30(8), 084008 (2017).
[Crossref]

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 065016 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Schematic of multispectral SNSPD based on dielectric mirror consisting of two film stacks with separated central wavelengths. (b) Simulated reflectivity (solid black line) and phase shift (dashed green line) on reflection at the front surface of the stacks and the absorptance of NbN SNSPD on the substrate (red line). (c) TEM image of the fabricated SNSPD sample. Pseudo colors (red, yellow and blue) are used to indicate NbN nanowires, yellow of stack 1 and blue of stack 2. Note that only four top bilayers of stack 2 are shown in the image. The layer at the very bottom of the image is the fifth SiO2 layer which was destroyed by focused ion beam used in the TEM sample preparation. The top layer of the image is the Pt layer coated onto the sample for TEM test. (d) Measured reflectivity of the dielectric mirror without superconducting film (solid black line), absorption of NbN films (solid red line) and measured system DEs for the SNSPDs as a function of wavelength (blue scatters).
Fig. 2
Fig. 2 DEs at 1550 nm, 1310 nm, and 1064 nm and DCRs versus bias current for the SNSPD.