Abstract

We study the energy spectrum of laser-induced conduction band (CB) electrons in water by multi-rate equations (MRE) with different impact ionization schemes. Rethfeld’s MRE model [Phys. Rev. Lett. 92, 187401(2004) Phys. Rev. B 79, 155424(2009)], but the corresponding rate equations are computationally very expensive. We introduce a simplified splitting scheme and corresponding rate equations that still agree with energy conservation but enable the derivation of an asymptotic SRE. This approach is well suited for the calculation of energy spectra at long pulse durations and high irradiance, and for combination with spatiotemporal beam propagation/plasma formation models. Using the energy-conserving MREs, we present the time-evolution of CB electron density and energy spectrum during femtosecond breakdown as well as the irradiance dependence of free-electron density, energy spectrum, volumetric energy density, and plasma temperature. These data are relevant for understanding photodamage pathways in nonlinear microscopy, free-electron-mediated modifications of biomolecules in laser surgery, and laser processing of transparent dielectrics in general.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells

C.L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski
Opt. Express 15(16) 10303-10317 (2007)

Time–frequency control of ultrafast plasma generation in dielectrics

Jiexi Liao and Jeremy R. Gulley
J. Opt. Soc. Am. B 31(12) 2973-2980 (2014)

Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

Babu Varghese, Valentina Bonito, Martin Jurna, Jonathan Palero, Margaret Horton, and Rieko Verhagen
Biomed. Opt. Express 6(4) 1234-1240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
    [Crossref] [PubMed]
  3. M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
    [Crossref]
  4. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  5. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
    [Crossref] [PubMed]
  6. A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  7. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [Crossref] [PubMed]
  8. D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
    [Crossref] [PubMed]
  9. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
    [Crossref]
  10. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [Crossref] [PubMed]
  11. N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
    [Crossref] [PubMed]
  12. E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
    [Crossref] [PubMed]
  13. J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
    [Crossref] [PubMed]
  14. C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
    [Crossref]
  15. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I - Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
    [Crossref]
  16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  17. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
    [Crossref]
  18. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
    [Crossref] [PubMed]
  19. N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
    [Crossref]
  20. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
    [Crossref]
  21. B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
    [Crossref] [PubMed]
  22. D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
    [Crossref] [PubMed]
  23. D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B Condens. Matter 46(23), 15102–15115 (1992).
    [Crossref] [PubMed]
  24. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
    [Crossref]
  25. N. Brouwer and B. Rethfeld, “Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse,” J. Opt. Soc. Am. B 31(11), C28–C35 (2014).
    [Crossref]
  26. A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
    [Crossref]
  27. B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B Condens. Matter Mater. Phys. 79(15), 155424 (2009).
    [Crossref]
  28. N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
    [Crossref]
  29. M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
    [Crossref]
  30. C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
    [Crossref] [PubMed]
  31. C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
    [Crossref] [PubMed]
  32. R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 eV photons,” J. Phys. Chem. 100(45), 17940–17949 (1996).
    [Crossref]
  33. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  34. B. K. Ridley, Quantum processes in semiconductors (Clarendon, 1999).
  35. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
    [Crossref]
  36. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
    [Crossref]
  37. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
    [Crossref] [PubMed]
  38. K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
    [Crossref]
  39. A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
    [Crossref]
  40. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035101 (2006).
    [Crossref]
  41. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref] [PubMed]
  42. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  43. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
    [Crossref] [PubMed]
  44. M. F. Schmalz, I. Wieser, F. Schindler, C. Czada, A. Leitenstorfer, and E. Ferrando-May, “Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin,” Opt. Lett. 43(12), 2877–2880 (2018).
    [Crossref] [PubMed]
  45. L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005).
    [Crossref]
  46. J. Jiao and Z. Guo, “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103(1), 195–205 (2011).
    [Crossref]
  47. J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
    [Crossref]
  48. A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
    [Crossref]
  49. A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
    [Crossref]
  50. A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
    [Crossref] [PubMed]
  51. V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
    [Crossref] [PubMed]
  52. D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
    [Crossref] [PubMed]
  53. E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
    [Crossref] [PubMed]
  54. L. Sanche, “Interaction of low energy electrons with DNA: Applications to cancer radiation therapy,” Radiat. Phys. Chem. 128, 36–43 (2016).
    [Crossref]
  55. L. Sanche, “Low energy electron-driven damage in biomolecules,” Eur. Phys. J. D 35(2), 367–390 (2005).
    [Crossref]

2018 (3)

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

M. F. Schmalz, I. Wieser, F. Schindler, C. Czada, A. Leitenstorfer, and E. Ferrando-May, “Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin,” Opt. Lett. 43(12), 2877–2880 (2018).
[Crossref] [PubMed]

A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
[Crossref]

2017 (1)

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

2016 (6)

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

L. Sanche, “Interaction of low energy electrons with DNA: Applications to cancer radiation therapy,” Radiat. Phys. Chem. 128, 36–43 (2016).
[Crossref]

A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

2015 (3)

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
[Crossref] [PubMed]

2014 (5)

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

N. Brouwer and B. Rethfeld, “Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse,” J. Opt. Soc. Am. B 31(11), C28–C35 (2014).
[Crossref]

A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

2013 (3)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref] [PubMed]

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
[Crossref]

2011 (3)

J. Jiao and Z. Guo, “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103(1), 195–205 (2011).
[Crossref]

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

2010 (3)

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

2009 (2)

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B Condens. Matter Mater. Phys. 79(15), 155424 (2009).
[Crossref]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

2007 (2)

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
[Crossref] [PubMed]

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

2006 (2)

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035101 (2006).
[Crossref]

2005 (4)

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005).
[Crossref]

L. Sanche, “Low energy electron-driven damage in biomolecules,” Eur. Phys. J. D 35(2), 367–390 (2005).
[Crossref]

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30(3), 320–322 (2005).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2004 (2)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

2002 (1)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

2000 (4)

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

1999 (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 eV photons,” J. Phys. Chem. 100(45), 17940–17949 (1996).
[Crossref]

1995 (1)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I - Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

1992 (1)

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B Condens. Matter 46(23), 15102–15115 (1992).
[Crossref] [PubMed]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Alizadeh, E.

E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
[Crossref] [PubMed]

Andersen, D.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

André, Y. B.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Angeley, D.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Armbruster, O.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Arnold, C. L.

Arnold, D.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B Condens. Matter 46(23), 15102–15115 (1992).
[Crossref] [PubMed]

Balling, P.

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
[Crossref]

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref] [PubMed]

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B Condens. Matter Mater. Phys. 79(15), 155424 (2009).
[Crossref]

Bartels, D. M.

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 eV photons,” J. Phys. Chem. 100(45), 17940–17949 (1996).
[Crossref]

Batlle, J.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Beaurepaire, E.

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

Ben-Yakar, A.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Blumenkranz, M. S.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Blumhardt, P.

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

Boudaïffa, B.

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Boulais, E.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Boutopoulos, C.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Bradforth, S. E.

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

Brelet, Y.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Brenk, O.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

Brouwer, N.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

N. Brouwer and B. Rethfeld, “Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse,” J. Opt. Soc. Am. B 31(11), C28–C35 (2014).
[Crossref]

Bulgakova, N. M.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Carbonnel, J.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Cartier, E.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B Condens. Matter 46(23), 15102–15115 (1992).
[Crossref] [PubMed]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Chen, J. K.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Christensen, B. H.

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B Condens. Matter Mater. Phys. 79(15), 155424 (2009).
[Crossref]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Cloutier, P.

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Colombier, J. P.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
[Crossref]

A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Couairon, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Crowell, R. A.

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 eV photons,” J. Phys. Chem. 100(45), 17940–17949 (1996).
[Crossref]

Culbertson, W.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Culbertson, W. W.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

Czada, C.

D’Souza, J. S.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Dagallier, A.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Débarre, D.

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

Deibler, M.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Derrien, T. J. Y.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Dharmadhikari, A. K.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Dharmadhikari, J. A.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Elles, C. G.

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

Ertmer, W.

Fattaccioli, D.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feliz, R.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Ferrando-May, E.

M. F. Schmalz, I. Wieser, F. Schindler, C. Czada, A. Leitenstorfer, and E. Ferrando-May, “Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin,” Opt. Lett. 43(12), 2877–2880 (2018).
[Crossref] [PubMed]

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Fomovsky, M.

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Freidank, S.

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Friedman, N. J.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Frislev, M.

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
[Crossref]

Fuchs, M.

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gong, Q.

Gooding, P.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Gudiksen, M. S.

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

Guillermin, R.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Guo, Z.

J. Jiao and Z. Guo, “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103(1), 195–205 (2011).
[Crossref]

Haahr-Lillevang, L.

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

Heisterkamp, A.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hoffmann, D. H. H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

Houard, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Huels, M. A.

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Huettman, G.

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Hunting, D.

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Itina, T. E.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
[Crossref]

A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Ivanov, D. S.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Jailaubekov, A. E.

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

Jarnac, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Jiang, H.

Jiang, L.

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005).
[Crossref]

Jiao, J.

J. Jiao and Z. Guo, “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103(1), 195–205 (2011).
[Crossref]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Jukna, V.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Kautek, W.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kennedy, P. K.

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I - Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Krutsch, H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

Lachaine, R.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Leitenstorfer, A.

M. F. Schmalz, I. Wieser, F. Schindler, C. Czada, A. Leitenstorfer, and E. Ferrando-May, “Highly standardized multicolor femtosecond fiber system for selective microphotomanipulation of deoxyribonucleic acid and chromatin,” Opt. Lett. 43(12), 2877–2880 (2018).
[Crossref] [PubMed]

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Liang, X. X.

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Linz, N.

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Liu, Y.

Lubatschowski, H.

Luther, K.

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

Marcellino, G.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Mathur, D.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Medvedev, N.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

Meshcheryakov, Y. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Meunier, M.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Miao, G. X.

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Milián, C.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Mysyrowicz, A.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Naghilou, A.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Olivier, N.

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

Orlando, T. M.

E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
[Crossref] [PubMed]

Osmani, O.

A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

Palanker, D. V.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Ramer, A.

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

Rao, B. J.

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

Rethfeld, B.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

N. Brouwer and B. Rethfeld, “Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse,” J. Opt. Soc. Am. B 31(11), C28–C35 (2014).
[Crossref]

A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035101 (2006).
[Crossref]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rudenko, A.

A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
[Crossref]

A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Sanche, L.

L. Sanche, “Interaction of low energy electrons with DNA: Applications to cancer radiation therapy,” Radiat. Phys. Chem. 128, 36–43 (2016).
[Crossref]

E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
[Crossref] [PubMed]

L. Sanche, “Low energy electron-driven damage in biomolecules,” Eur. Phys. J. D 35(2), 367–390 (2005).
[Crossref]

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Sander, M. U.

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

Schindler, F.

Schmalz, M. F.

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref] [PubMed]

Schuele, G.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Seibel, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Seibel, B. S.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

Sessarego, J. P.

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Shkrob, I. A.

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Shugaev, M. V.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Simoneau, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Sonina, S. V.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Stöckl, M.

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, Q.

Supatto, W.

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

Talamo, J.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Talamo, J. H.

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Tomas, M.

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

Träutlein, D.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Trickl, T.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

Troe, J.

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

Vogel, A.

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

Vogelmann, H.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

Vukelic, S.

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Waedegaard, K.

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
[Crossref]

Wang, C.

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Wieser, I.

Wiltberger, M.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Woodley, B.

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Wu, C. P.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Wu, Z.

Yang, H.

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Yildirim, M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Zhang, Y.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
[Crossref]

Zhigilei, L. V.

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Zhou, J.

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
[Crossref]

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Zyablitskaya, M.

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

E. Alizadeh, T. M. Orlando, and L. Sanche, “Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA,” Annu. Rev. Phys. Chem. 66(1), 379–398 (2015).
[Crossref] [PubMed]

Appl. Phys. B (3)

J. Jiao and Z. Guo, “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103(1), 195–205 (2011).
[Crossref]

J. Zhou, J. K. Chen, and Y. Zhang, “Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses,” Appl. Phys. B 90(1), 141–148 (2008).
[Crossref]

A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: Application of kinetic approach and multiple rate equation,” Appl. Phys., A Mater. Sci. Process. 101(1), 19–25 (2010).
[Crossref]

K. Waedegaard, M. Frislev, and P. Balling, “Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths,” Appl. Phys., A Mater. Sci. Process. 110(3), 601–605 (2013).
[Crossref]

Chem. Phys. (1)

M. U. Sander, M. S. Gudiksen, K. Luther, and J. Troe, “Liquid water ionization: mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated electrons,” Chem. Phys. 258(2-3), 257–265 (2000).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Eur. Phys. J. D (1)

L. Sanche, “Low energy electron-driven damage in biomolecules,” Eur. Phys. J. D 35(2), 367–390 (2005).
[Crossref]

Front. Genet. (1)

E. Ferrando-May, M. Tomas, P. Blumhardt, M. Stöckl, M. Fuchs, and A. Leitenstorfer, “Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling,” Front. Genet. 4, 135 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I - Theory,” IEEE J. Quantum Electron. 31(12), 2241–2249 (1995).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical ultrafast laser surgery: Recent advances and future directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 14 (2014).
[Crossref]

Int. J. Numer. Model (1)

A. Rudenko, J. P. Colombier, and T. E. Itina, “Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media,” Int. J. Numer. Model 31(2), e2215 (2018).
[Crossref]

J. Appl. Phys. (2)

A. Ramer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

N. J. Friedman, D. V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B. S. Seibel, J. Batlle, R. Feliz, J. H. Talamo, M. S. Blumenkranz, and W. W. Culbertson, “Femtosecond laser capsulotomy,” J. Cataract Refract. Surg. 37(7), 1189–1198 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (2)

C. G. Elles, A. E. Jailaubekov, R. A. Crowell, and S. E. Bradforth, “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
[Crossref] [PubMed]

C. G. Elles, I. A. Shkrob, R. A. Crowell, and S. E. Bradforth, “Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation,” J. Chem. Phys. 126(16), 164503 (2007).
[Crossref] [PubMed]

J. Heat Transfer (1)

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127(10), 1167–1173 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 eV photons,” J. Phys. Chem. 100(45), 17940–17949 (1996).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

MRS Bull. (1)

M. V. Shugaev, C. P. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D. S. Ivanov, T. J. Y. Derrien, N. M. Bulgakova, W. Kautek, B. Rethfeld, and L. V. Zhigilei, “Fundamentals of ultrafast laser-material interaction,” MRS Bull. 41(12), 960–968 (2016).
[Crossref]

Nanoscale (1)

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9(9), 3023–3032 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. Wang, M. Fomovsky, G. X. Miao, M. Zyablitskaya, and S. Vukelic, “Femtosecond laser crosslinking of the cornea for non-invasive vision correction,” Nat. Photonics 12(7), 416–422 (2018).
[Crossref]

Nature (2)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Ramer, L. Haahr-Lillevang, B. Rethfeld, and P. Balling, “Modeling the transient optical parameters in laser-excited band gap materials,” Opt. Eng. 56(1), 011015 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

A. Rudenko, J. P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94(2), 024113 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (2)

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B Condens. Matter 46(23), 15102–15115 (1992).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 61(17), 11437–11450 (2000).
[Crossref]

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B Condens. Matter Mater. Phys. 79(15), 155424 (2009).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B Condens. Matter Mater. Phys. 91(13), 134114 (2015).
[Crossref]

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B Condens. Matter Mater. Phys. 61(4), 2643–2650 (2000).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B Condens. Matter Mater. Phys. 73(3), 035101 (2006).
[Crossref]

Phys. Rev. E (1)

V. Jukna, A. Jarnac, C. Milián, Y. Brelet, J. Carbonnel, Y. B. André, R. Guillermin, J. P. Sessarego, D. Fattaccioli, A. Mysyrowicz, A. Couairon, and A. Houard, “Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses,” Phys. Rev. E 93(6), 063106 (2016).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur, “Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by in situ electrons and radicals,” Phys. Rev. Lett. 106(11), 118101 (2011).
[Crossref] [PubMed]

PLoS One (1)

D. Débarre, N. Olivier, W. Supatto, and E. Beaurepaire, “Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range,” PLoS One 9(8), e104250 (2014).
[Crossref] [PubMed]

Radiat. Phys. Chem. (1)

L. Sanche, “Interaction of low energy electrons with DNA: Applications to cancer radiation therapy,” Radiat. Phys. Chem. 128, 36–43 (2016).
[Crossref]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

D. V. Palanker, M. S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N. J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, and W. Culbertson, “Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography,” Sci. Transl. Med. 2(58), 58ra85 (2010).
[Crossref] [PubMed]

Science (1)

B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287(5458), 1658–1660 (2000).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (1)

B. K. Ridley, Quantum processes in semiconductors (Clarendon, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Ionization schemes for laser energy deposition in water with different impact ionization schemes. They include Rethfeld’s scheme with zero start energy after impact ionization (a), a simplified scheme with constant start energy of 1/6 of the effective bandgap Δ ˜ (b), and Christensen and Balling’s scheme, in which the residual energy remaining after impact ionization is split into different energy levels that depend on photon energy (c). Red arrows mark transitions involving inverse Bremsstrahlung absorption (IBA) and impact ionization. The interband energy level Esolv of water is relevant only for strong field excitation process, which are marked by blue arrows.
Fig. 2
Fig. 2 Temporal evolution of the effective bandgap and kcrit for fs pulses of 1050 nm with Gaussian temporal shape at different irradiance values.
Fig. 3
Fig. 3 Asymptotic average kinetic energy of CB electrons as a function of wavelength, calculated from Eq. (17).
Fig. 4
Fig. 4 Normalized transition time tasympL (solid lines) and normalized one-photon excitation rate W1pt/αimp (dashed lines) at bubble formation thresholds, plotted as a function of wavelength and pulse duration. The respective peak irradiance values at threshold are: I0 = 2.90 × 1013 W/cm2 for τL = 50 fs; I0 = 8.3 × 1012 W/cm2 for τL = 250 fs; I0 = 1.63 × 1012 W/cm2 for τL = 3 ps; I0 = 6.9 × 1011 W/cm2 for τL = 30 ps; and I0 = 3.8 × 1011 W/cm2 for τL = 2 ns. These I0 values refer to the average bubble threshold in the displayed wavelength range. The value for τL = 50 fs is calculated by the MRE (1) model, the value for τL = 250 fs is taken from [19], and the value for τL = 2 ns is taken from [28]. The others are taken from Fig. 5 in [42]. The collision time is set as 1.0 fs.
Fig. 5
Fig. 5 Temporal evolution of free electron density (left column) and average kinetic energy of CB electrons (right column) at various laser parameters simulated by the MRE (1) model (solid lines) and by the SRE (1) model (dashed lines). First and second rows present results for irradiation close to the bubble threshold with pulse duration with 50 fs and 250 fs. The respective peak irradiance values are I0 = 2.9 × 1013 W/cm2 for τL = 50 fs, and I0 = 8.3 × 1012 W/cm2 for τL = 250 fs. The same I0 values are used for all wavelengths (350 nm, 500 nm and 1050 nm) although the bubble thresholds slight vary with wavelength. The third row contains results for laser pulse τL = 250 fs at a lower irradiance values I0 = 1.0 × 1012 W/cm2, which is slightly above the threshold for nanosurgery by fs pulse series [6,44]. In all calculations τcoll = 1.0 fs.
Fig. 6
Fig. 6 Time evolution of energy deposition simulated by the MRE (2) model. (a) Change of number density of CB electrons at each individual energy level as a function of time; (b) evolution of total number density of CB electrons, ntotal, and of the contribution coming from SFI, nSFI; (c) evolution of the mean kinetic energy of CB electrons and holes; (d) evolution of energy deposition expressed by the resulting temperature rise. Besides the total temperature rise, ΔTtotal, also the contributions from electrons and holes, ΔTe- and ΔTh are displayed. Simulation parameters are I0 = 2.0 × 1012 W/cm2, τL = 100 fs, λ = 1035 nm, and τcoll = 0.9 fs.
Fig. 7
Fig. 7 Time evolution of CB electron energy spectra calculated using the MRE (2) model for water. Simu-lation parameters are the same as in Fig. 5: I0 = 2.0 × 1012 W/cm2, τL = 100 fs, λ = 1035 nm, and τcoll = 0.9 fs.
Fig. 8
Fig. 8 Comparison of electron energy spectra at the end of a 100-fs pulse predicted by MRE (1) (dashed lines) and MRE (2) (solid lines) for two different wavelengths (515 nm and 1035 nm) and irradiance levels. Irradiance values in the top row are typical for nanosurgery by pulse series, and values in the bottom row represent the bubble threshold.
Fig. 9
Fig. 9 Irradiance dependence of energy deposition simulated by the MRE (1) model, the SRE (1) model, and the MRE (2) model for 250 fs laser pulses at λ = 515 nm (a) and at λ = 1035 nm (b). The respective irradiance ranges are chosen such that full ionization is not reached because otherwise the computational efforts becomes too large for calculations using MRE(2). The collision time τcoll is 1.0 fs for the SRE model and 0.9 fs for the MRE models. The deposited energy is represented in temperature rise ΔT on the left axis and in volumetric energy density U on the right axis. Scaling of both axes is related by U = 4.2 × 10−3 (kJ cm−3 K−1) × ΔT. Arrows indicate the bubble formation threshold.
Fig. 10
Fig. 10 Average kinetic energy at the end of the pulse as a function of peak irradiance I0, calculated by MRE (2) for 100 fs and 250 fs pulses at 350 nm (a), 515 nm (b), and 1035 nm (c). The sudden jump of ε ¯ for 250 fs pulses indicates that full ionization is reached; see Fig. 11.
Fig. 11
Fig. 11 Irradiance dependence of electron energy spectra at the end of the pulse simulated by the MRE (1) model. Spectra are shown for: I0 = 0.5 × Iref (a); I0 = 1.0 × Iref (b); I0 = 9.5 × Iref (c); I0 = 10 × Iref (d); I0 = 11 × Iref (e), with Iref = 1.0 × 1012 W/cm2. Simulations were performed for laser pulse of τL = 250 fs and λ = 1035 nm, using a collision time τcoll = 0.9 fs. The insert in (a) shows the irradiance dependence of total number density of CB electrons, while the insert in (b) shows the irradiance dependence of the average kinetic energy of CB electrons at the end of the pulse, calculated using Eq. (16).

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Δ ˜ = 2 π E gap 1+ γ 2 γ Ε( 1 1+ γ 2 ),with γ= ω e m c n 0 ε 0 E gap I .
n ˙ SFI = n ˙ E solv + n ˙ E gap .
W 1pt = σ 1pt ×I/(ω),with σ 1pt = τ coll ω 2 τ coll 2 +1 × e 2 c n 0 ε 0 m c ,
n ˙ 0 = n ˙ SFI W 1pt n 0 +2 α imp n k crit , n ˙ j = W 1pt n j1 W 1pt n j ,j=1( k crit 1 ), n ˙ k crit = W 1pt n k crit 1 α imp n k crit .
d n total dt = n ˙ SFI +( α imp n k crit n total ) n total .
t asymp = 1 ( 2 k crit 1) W 1pt .
η AI,asymp =( 2 k crit 1) W 1pt ,
d n total dt = n ˙ SFI + η AI, asymp n total .
τ L >> t asymp ,and α imp >> W 1pt .
ε ¯ = j=0 k crit n j × ε j n total .
ε ¯ asymp =( 1 2 k crit 1 k crit )ω.
k crit ' = ε crit ε start ω +1 = ( 4/3 ) Δ ˜ ω +1 .
Θ( ε j ε crit )={ 1, 0, if ε j ε crit if ε j < ε crit .
n ˙ 0 = n ˙ SFI n val n bound W 1pt n 0 +2 j=1 k max ' [ α imp n j n val n bound Θ( ε j ε crit ) ] , n ˙ j = W 1pt ( n j1 n j ) α imp n j n val n bound Θ( ε j ε crit ),j=1 k crit ' ( k max ' 1 ), n ˙ k max ' = W 1pt n k max ' 1 α imp n k max n val n bound Θ( ε k max ε crit ).
d n total dt = n ˙ SFI n val n bound + η AI, asymp n total n val n bound .
ε ¯ = j=0 k max ' n j × ε j n total + 1 6 Δ ˜ ,
ε ¯ asymp =( 1 2 k crit ' 1 k crit )ω+ 1 6 Δ ˜ .
U MRE = n total ×( ε ¯ + Δ ˜ )+ n h,imp × ε h,imp ,and U SRE = n total ×( ε ¯ asymp + Δ ˜ )+ n h,imp × ε h,imp , withn h,imp = n total n SFI .
ε resd,j' =( ε j' Δ ˜ )/3.
ϒ( ε resd,j' ε j )={ 2,0| ε resd,j' ε j | 1 4 ω, 1, 1 4 ω<| ε resd,j' ε j |< 3 4 ω, 0,elsewhere. with j >j.
n ˙ 0 = n ˙ SFI n val n bound W 1pt n 0 + j =1 k max [ α imp n j n val n bound Θ( ε j ε crit )ϒ( ε resd, j ε 0 ) ] , n ˙ j = W 1pt ( n j1 n j )+ j =j+1 k max [ α imp n j n val n bound Θ( ε j ε crit )ϒ( ε resd, j ε j ) ] α imp n j n val n bound Θ( ε j ε crit ),j=1 k crit ( k max 1 ), n ˙ k max = W 1pt n k max 1 α imp n k max n val n bound Θ( ε k max ε crit ).
U MRE = n total ×( ε ¯ + Δ ˜ )+ U h,imp ,with U ˙ h,imp = j =1 k max [ α imp n j n val n bound Θ( ε j ε crit ) ε resd, j ] .
n k crit ( t )= n ˙ SFI 2 k crit ( 1 1/2 k crit ) α imp ×exp[ ( 2 k crit 1 ) W 1pt t ],and
n total ( t )= n ˙ SFI / W 1pt 2 k crit ( 2 k crit 2+ 1/2 k crit ) ×exp[ ( 2 k crit 1 ) W 1pt t ].
n j ( t )= n ˙ SFI / W 1pt k crit ( 2 k crit ) j ( 2 k crit 1 ) ×exp[ ( 2 k crit 1 ) W 1pt t ].
ε ¯ = j=0 k crit n j × ε j n total .
ε ¯ asymp =( 1 2 k crit 1 k crit )ω.