Abstract

We investigate the depth imaging of objects through various densities of different obscurants (water fog, glycol-based vapor, and incendiary smoke) using a time-correlated single-photon detection system which had an operating wavelength of 1550 nm and an average optical output power of approximately 1.5 mW. It consisted of a monostatic scanning transceiver unit used in conjunction with a picosecond laser source and an individual Peltier-cooled InGaAs/InP single-photon avalanche diode (SPAD) detector. We acquired depth and intensity data of targets imaged through distances of up to 24 meters for the different obscurants. We compare several statistical algorithms which reconstruct both the depth and intensity images for short data acquisition times, including very low signal returns in the photon-starved regime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments

Frank Christnacher, Stéphane Schertzer, Nicolas Metzger, Emmanuel Bacher, Martin Laurenzis, and René Habermacher
Opt. Express 23(26) 32897-32908 (2015)

Lidar system model for use with path obscurants and experimental validation

J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte
Appl. Opt. 47(22) 4085-4093 (2008)

Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
    [Crossref]
  2. V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
    [Crossref]
  3. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  4. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref] [PubMed]
  5. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  6. Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
    [Crossref]
  7. K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).
  8. Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25(9), 10189–10195 (2017).
    [Crossref] [PubMed]
  9. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
    [Crossref] [PubMed]
  10. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
    [Crossref]
  11. X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
    [Crossref] [PubMed]
  12. N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).
  13. D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News 13(10), 36–42 (2002).
    [Crossref]
  14. I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
    [Crossref]
  15. F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).
  16. R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
  17. M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
    [Crossref]
  18. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  19. S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
    [Crossref]
  20. M. S. Awan, Marzuki, E. Leitgeb, F. Nadeem, M. S. Khan, and C. Capsoni, “Weather effects impact on the optical pulse propagation in free space,” IEEE 69th Vehicular Technology Conference, VTC Springs, pp. 1–5 (2009).
  21. G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in 2018 IEEE International Conference on Computational Photography (ICCP), 1–10 (2018).
  22. M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Technol. 32(3), 513–520 (2014).
    [Crossref]
  23. G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
    [Crossref] [PubMed]
  24. F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
    [Crossref] [PubMed]
  25. M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
    [Crossref]
  26. M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
    [Crossref]
  27. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE Opt. Wireless Commun. III, vol. 4214, pp. 26–37 (2001).
    [Crossref]
  28. R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
    [Crossref]
  29. J. McCartney, Optics of the Atmosphere: Scattering by molecules and particles (Wiley, 1976).
  30. R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).
  31. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [Crossref] [PubMed]
  32. Permaflect is a trademark of LABSPHERE, INC., 231 Shaker Street, POB 70, North Sutton, NH 03260 US, www.labsphere.com
  33. H. G. Houghton, “The Size and Size Distribution of Fog Particles,” Physics 2(6), 467–475 (1932).
    [Crossref]
  34. F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).
  35. H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. fr. Atm. 12, 33–55 and 171–181 (1924).
  36. D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
    [Crossref]
  37. J. Rapp and V. K. Goyal, “A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
    [Crossref]
  38. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
    [Crossref] [PubMed]
  39. D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
    [Crossref]
  40. J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, J. Tourneret, and S. McLaughlin, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” arXiv:1810.11633 (2018).
  41. A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.
  42. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
    [Crossref] [PubMed]
  43. Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
    [Crossref]
  44. A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
    [Crossref]
  45. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
    [Crossref]
  46. A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
    [Crossref]
  47. P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
    [Crossref]
  48. H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4257–4266 (2016).
    [Crossref]
  49. A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
    [Crossref]
  50. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
    [Crossref]
  51. M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
    [Crossref]
  52. J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing,” in 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4 (2010).
    [Crossref]
  53. M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
    [Crossref]
  54. M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
    [Crossref]
  55. J. M. Wallace and P. V. Hobbs, Atmospheric Science: An introductory survey (Elsevier Science, 2006).
  56. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
    [Crossref]
  57. M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
    [Crossref]
  58. M. Henriksson and P. Jonsson, “Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array,” Opt. Eng. 57(9), 93104 (2018).
    [Crossref]
  59. M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

2018 (7)

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

M. Henriksson and P. Jonsson, “Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array,” Opt. Eng. 57(9), 93104 (2018).
[Crossref]

M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

2017 (7)

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

J. Rapp and V. K. Goyal, “A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25(9), 10189–10195 (2017).
[Crossref] [PubMed]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref] [PubMed]

2016 (4)

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4257–4266 (2016).
[Crossref]

2015 (2)

2014 (5)

K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Technol. 32(3), 513–520 (2014).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

2013 (1)

2012 (4)

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
[Crossref]

2011 (3)

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

2010 (2)

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

2009 (1)

2005 (1)

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

2002 (2)

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News 13(10), 36–42 (2002).
[Crossref]

2001 (1)

R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
[Crossref]

1999 (1)

I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
[Crossref]

1992 (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

1962 (1)

D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

1932 (1)

H. G. Houghton, “The Size and Size Distribution of Fog Particles,” Physics 2(6), 467–475 (1932).
[Crossref]

Aggarwal, H. K.

H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4257–4266 (2016).
[Crossref]

Allard, L.

M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

Altmann, Y.

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

Bacher, E.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

Bergé, L.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Bioucas-Dias, J.

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

Bioucas-Dias, J. M.

M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
[Crossref]

J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing,” in 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4 (2010).
[Crossref]

Boyd, S.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

Buller, G. S.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

Calder, N.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Champeaux, S.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Chen, J.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Chen, W.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

Christnacher, F.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Chu, E.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Collins, R. J.

Connolly, P. W. R.

Della Frera, A.

Dobigeon, N.

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

Du, B.

Dutton, N. A. W.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Eckstein, J.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

Eisenberg, E. C.

R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
[Crossref]

Eldar, Y. C.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

Entwistle, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Fatemi, E.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Fernández, V.

Ferraro, J.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing,” in 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4 (2010).
[Crossref]

Frey, S.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Gemmell, N. R.

Ghassemlooy, Z.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Gholami, A.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Gnecchi, S.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Gordon, K.

K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).

Goyal, V. K.

J. Rapp and V. K. Goyal, “A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Grabner, M.

Grant, L. A.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Grönwall, C.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Gyongy, I.

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Habermacher, R.

Halimi, A.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

Henderson, R. K.

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Henriksson, M.

M. Henriksson and P. Jonsson, “Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array,” Opt. Eng. 57(9), 93104 (2018).
[Crossref]

M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Hero, A.

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Hiskett, P.

K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).

Houghton, H. G.

H. G. Houghton, “The Size and Size Distribution of Fog Particles,” Physics 2(6), 467–475 (1932).
[Crossref]

Ijaz, M.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Iordache, M.

M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

Iordache, M. D.

M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
[Crossref]

Itzler, M. A.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Javornik, T.

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Jiang, X.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Jonsson, P.

M. Henriksson and P. Jonsson, “Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array,” Opt. Eng. 57(9), 93104 (2018).
[Crossref]

M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

Kandus, G.

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Kang, Y.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Kasparian, J.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Killinger, D.

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News 13(10), 36–42 (2002).
[Crossref]

Kim, I. I.

I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
[Crossref]

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Kobayashi, T.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

Korevaar, E. J.

I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
[Crossref]

Krichel, N. J.

Kvicera, V.

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Technol. 32(3), 513–520 (2014).
[Crossref]

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Lamb, R.

K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).

Lamb, R. A.

Larsson, H.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Laurenzis, M.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Le Minh, H.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Leitgeb, E.

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Li, D.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Li, L.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Li, Z.

Lindell, D. B.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Liu, D.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Maccarone, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

Majumdar, A.

H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4257–4266 (2016).
[Crossref]

McCarthy, A.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

McEwan, K. J.

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

McLaughlin, S.

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

McManamon, P.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

Méjean, G.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Metzger, N.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

Mitchell, M.

I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
[Crossref]

Moffat, J.

Molebny, V.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

Monnin, D.

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Nadeem, F.

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Narasimhan, S. G.

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

Nayar, S. K.

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

Newstadt, G.

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

Nuter, R.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

O’Toole, M.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Osher, S.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Owens, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Pang, C.

Parikh, N.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

Parmesan, L.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Patel, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Pawlikowska, A. M.

Peleato, B.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

Peng, H.

Perez, J.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Petillot, Y.

Pierce, R. M.

R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
[Crossref]

Plaza, A.

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
[Crossref]

M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
[Crossref]

Poyet, J.-M.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

Rae, B. R.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

Rajbhandari, S.

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

Ramaprasad, J.

R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
[Crossref]

Ramirez, I.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

Rangwala, S.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Rapp, J.

J. Rapp and V. K. Goyal, “A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

Raskar, R.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in 2018 IEEE International Conference on Computational Photography (ICCP), 1–10 (2018).

Ren, X.

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

Rudin, L. I.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Ruggeri, A.

Salmon, E.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Sapiro, G.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

Satat, G.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in 2018 IEEE International Conference on Computational Photography (ICCP), 1–10 (2018).

Scarcella, C.

Schertzer, S.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

Scholz, T.

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Senko, T.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Shapiro, J. H.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Shin, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Simard, J.-R.

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

Skupin, S.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Slomkowski, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Somers, B.

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

Sprechmann, P.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

Steinvall, O.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

Swinehart, D. F.

D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

Tancik, M.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in 2018 IEEE International Conference on Computational Photography (ICCP), 1–10 (2018).

Tao, Y.

Tobin, R.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

Tolt, G.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Tosi, A.

Tower, J.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Venkatraman, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Vinçotte, A.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Wallace, A. M.

Warburton, R. E.

Wetzstein, G.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Wolf, J. P.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Wong, F. N.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Wu, E.

Wu, G.

Yu, J.

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Zalud, P. F.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Zeng, H.

Zhang, T.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Zhao, W.

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

ACM Trans. Graph. (1)

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Appl. Opt. (1)

Found. Trends Mach. Learn. (1)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2011).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (1)

H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the presence of mixed noise using joint-sparsity and total variation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4257–4266 (2016).
[Crossref]

IEEE Photonics J. (1)

Y. Kang, L. Li, D. Liu, D. Li, T. Zhang, and W. Zhao, “Fast long-range photon counting depth imaging with sparse single-photon data,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

IEEE Trans. Comput. Imaging (4)

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

J. Rapp and V. K. Goyal, “A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

A. Halimi, J. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity or mismodelling effects,” IEEE Trans. Comput. Imaging 3(2), 146–159 (2017).
[Crossref]

Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, and A. Hero, “Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields,” IEEE Trans. Comput. Imaging 3(4), 658–670 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (3)

M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014).
[Crossref]

M. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, “MUSIC-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression,” IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014).
[Crossref]

IEEE Trans. Image Process. (1)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (1)

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Process. 59(9), 4183–4198 (2011).
[Crossref]

Int. J. Comput. Vis. (1)

S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” Int. J. Comput. Vis. 48(3), 233–254 (2002).
[Crossref]

J. Chem. Educ. (1)

D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (6)

M. Laurenzis, F. Christnacher, D. Monnin, and T. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective—from the East to the West,” Opt. Eng. 56(3), 031220 (2016).
[Crossref]

M. Henriksson and P. Jonsson, “Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array,” Opt. Eng. 57(9), 93104 (2018).
[Crossref]

Opt. Express (7)

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25(9), 10189–10195 (2017).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref] [PubMed]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref] [PubMed]

F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, and R. Habermacher, “Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments,” Opt. Express 23(26), 32897–32908 (2015).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

Opt. Photonics News (1)

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News 13(10), 36–42 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Méjean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J. P. Wolf, S. Skupin, A. Vinçotte, R. Nuter, S. Champeaux, and L. Bergé, “Multifilamentation transmission through fog,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 2), 026611 (2005).
[Crossref] [PubMed]

Physica D (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Physics (1)

H. G. Houghton, “The Size and Size Distribution of Fog Particles,” Physics 2(6), 467–475 (1932).
[Crossref]

Proc. SPIE (8)

F. Christnacher, J.-M. Poyet, E. Bacher, N. Metzger, S. Schertzer, and J.-R. Simard, “Influence of the obscurants and the illumination wavelengths on a range-gated active imaging system performance,” Proc. SPIE 10796, 1079603 (2018).

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Depth imaging through obscurants using time-correlated single-photon counting,” Proc. SPIE 10659, 106590S (2018).

R. M. Pierce, J. Ramaprasad, and E. C. Eisenberg, “Optical attenuation in fog and clouds,” Proc. SPIE 4530, 58–71 (2001).
[Crossref]

I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE 3850, 49–62 (1999).
[Crossref]

K. Gordon, P. Hiskett, and R. Lamb, “Advanced 3D imaging lidar concepts for long range sensing,” Proc. SPIE 9114, 91140G (2014).

M. Henriksson, L. Allard, and P. Jonsson, “Panoramic single-photon counting 3D lidar,” Proc. SPIE 10796, 1079606 (2018).

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging,” Proc. SPIE 8033, 80330G (2011).
[Crossref]

Radioengineering (1)

F. Nadeem, T. Javornik, E. Leitgeb, V. Kvicera, and G. Kandus, “Continental fog attenuation empirical relationship from measured visibility data,” Radioengineering 19(4), 596–600 (2010).

Science (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Other (15)

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, J. Tourneret, and S. McLaughlin, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” arXiv:1810.11633 (2018).

A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin, and G. S. Buller, “Restoration of multidimensional sparse single-photon 3D-LiDAR images,” IEEE Trans. Comput. Imaging. under review.

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. fr. Atm. 12, 33–55 and 171–181 (1924).

Permaflect is a trademark of LABSPHERE, INC., 231 Shaker Street, POB 70, North Sutton, NH 03260 US, www.labsphere.com

J. McCartney, Optics of the Atmosphere: Scattering by molecules and particles (Wiley, 1976).

M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, H. Le Minh, J. Perez, and A. Gholami, “Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions,” Proc. 8th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., pp. 1–5 (2012).
[Crossref]

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE Opt. Wireless Commun. III, vol. 4214, pp. 26–37 (2001).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF imaging techniques using SPAD-based quanta image sensors,” Proc. Int. Image Sensor Workshop (IISW), pp. 170–173 (2015).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. S. Awan, Marzuki, E. Leitgeb, F. Nadeem, M. S. Khan, and C. Capsoni, “Weather effects impact on the optical pulse propagation in free space,” IEEE 69th Vehicular Technology Conference, VTC Springs, pp. 1–5 (2009).

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in 2018 IEEE International Conference on Computational Photography (ICCP), 1–10 (2018).

J. M. Wallace and P. V. Hobbs, Atmospheric Science: An introductory survey (Elsevier Science, 2006).

J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing,” in 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4 (2010).
[Crossref]

A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Restoration of multilayered single-photon 3d lidar images,” 2017 25th European Signal Processing Conference (EUSIPCO), Kos, pp. 708–712 (2017).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, pp. 86–90 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the single-photon depth imaging system which was operated at a wavelength of 1550 nm. The system comprised of a pulsed supercontinuum laser source, a InGaAs/InP SPAD detector, a custom-designed monostatic scanning transceiver unit, and a TCSPC timing module. Optical components include: polarizing beam splitter (PBS); fiber collimation packages (FC1, FC2, FCR, FCT); scanning galvanometer mirrors (G1, G2); relay lenses (RL1, RL2, RL3); objective lens (OBJ); longpass filters (LP1, LP2); shortpass filter (SP); bandpass filters (BP1, BP2). The target was a polystyrene head placed at distances of up to approximately 24 meters into an obscurant chamber, which was subsequently filled with various types of obscurants.
Fig. 2
Fig. 2 On the left is a photograph taken from the rear of the obscurant chamber with no obscurant present. The dimensions of the chamber were 26 × 2.5 × 2.3 meters. The chamber was lined with plastic sheeting to help contain the obscurant for the duration of the measurement set. On the right is a photograph taken from the front of the chamber of the target scene which included a life-size polystyrene head and two sets of calibration panels for attenuation measurements for both λ = 1550 nm and the visible band.
Fig. 3
Fig. 3 On the left is a photograph of the target scene (located at 24 meters) obscured by glycol-based smoke near the beginning of the measurement set. In this case target B1 is visible and B2 is partially visible. On the right is a photograph near the end of the measurement set (approximately 10 minutes later) once the obscurant has mostly dispersed from the chamber. The whole of Set B, Set A, and the target is visible.
Fig. 4
Fig. 4 A comparison of the attenuation coefficient α (m−1) as a function of time for both λ = 1550 nm and the visible band for target positions at 24 meters of different obscurants: (a) white canister smoke; (b) glycol-based smoke, (c) and water-based fog. The visible band corresponds to detection in the wavelength band 400 – 800 nm.
Fig. 5
Fig. 5 (a) and (b) show single pixel timing histograms (2 ps time bin width) extracted from a measurement of the target through 24 meters of glycol-based smoke. Each histogram shows the number of photon returns obtained in a single-pixel over an acquisition time of ~3 ms, which is equivalent to approximately 47400 laser pulses. (a) shows the timing histogram when the attenuation coefficient is 0.08 m−1 (i.e. low level of obscurant); (b) shows the timing histogram using the same experimental conditions except with a higher level of obscurant, corresponding to an attenuation coefficient of 0.18 m−1. (c) and (d) show aggregated timing histograms of the target and calibration Set A with the attenuation coefficients of 0.08 m−1 and 0.18 m−1, respectively. The average background per timing bin is 5 counts per timing bin for α = 0.08 m−1 and 25 counts per timing bin for α = 0.18 m−1.
Fig. 6
Fig. 6 Depth and intensity profiles, using the λ = 1550 nm single-photon transceiver, of the polystyrene head through 24 meters of white canister smoke obtained using pixel-wise cross-correlation. The per-pixel acquisition time was 3 ms per pixel. The top row shows results obtained with no obscurant present while the bottom row shows the results obtained in white smoke when the attenuation coefficient was α = 0.10 m−1 at λ = 1550 nm. This represented 2.4 attenuation lengths at λ = 1550 nm and 12.0 attenuation lengths in the visible. The Fig. shows: (a) and (d) RGB photographs taken of the scene at the time of measurement; (b) and (e) depth profiles of the target; (c) and (f) intensity profiles of the target.
Fig. 7
Fig. 7 Depth profiles of the polystyrene head through 24 meters of white canister smoke using the λ = 1550 nm single-photon transceiver. Reconstructions of the target are shown for α = 0.10 m−1, obtained using the pixel-wise cross-correlation (first row), RDI-TV (second row row), UA (third row), and NR3D algorithms (fourth row). These depth profiles were reconstructed from the full data set (3 ms per-pixel) and data with reduced acquisition times of 0.01 ms per-pixel, 0.05 ms per-pixel, and 0.1 ms per-pixel.
Fig. 8
Fig. 8 Depth and intensity profiles, measured using the λ = 1550 nm single-photon transceiver, of the polystyrene head target through 24 meters of glycol-based smoke at NAL (1550 nm) = 4.0, 3.5, 3.1, and 2.7. In the visible region, these attenuation lengths are equivalent to 13.6, 11.4, 10.0, and 8.8, respectively. The per-pixel acquisition time was 3 ms (approximately 30 seconds total). The top row presents depth profiles of the target obtained using pixel-wise cross-correlation where color represents depth with zero depth being close to the front surface of the target. The bottom row presents the intensity profiles where the color bar represents the number of photon returns from each pixel.
Fig. 9
Fig. 9 3D point cloud representations of the polystyrene head target, measured using the λ = 1550 nm single-photon transceiver, for both depth and intensity through 24 meters of glycol-based smoke at NAL (1550 nm) = 3.5, 3.1, and 2.7. In the visible region, these attenuation lengths are equivalent to 11.4, 10.0, and 8.8, respectively. The per-pixel acquisition time was 3 ms (approximately 30 seconds total). The data was reconstructed using: (first row) cross-correlation; (second row) RDI-TV; (third row) UA; (fourth row) M-NR3D algorithm. The depth scale is in meters for all images. The SRE values are shown below each point cloud representation.
Fig. 10
Fig. 10 Depth and intensity profiles of the polystyrene head target, measured using the λ = 1550 nm single-photon transceiver, through 5 meters of water fog at NAL (1550 nm) = 4.7, 3.8, 3.1, and 2.8. The per-pixel acquisition time was 3 ms (approximately 30 seconds total). The top row presents RGB photographs of the scene at the point of measurement, the middle row presents depth profiles of the target obtained using pixel-wise cross-correlation, and the bottom row presents the intensity profiles.
Fig. 11
Fig. 11 3D point cloud representations of the polystyrene head target, using the λ = 1550 nm single-photon transceiver, showing both depth and intensity through 5 meters of water fog at NAL (1550 nm) = 3.8, 3.1, and 2.8. The per-pixel acquisition time was 3 ms (approximately 30 seconds total). The data was reconstructed using: (first row) cross-correlation; (second row) RDI-TV; (third row) UA; (fourth row) the proposed M-NR3D algorithm.

Tables (1)

Tables Icon

Table 1 Summary of main system parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V= 1 α ln[ C 0 C th ],
V= 3 α .
N AL =αd= 1 2 ln[ n 0 n ],
C t = i=1 T y t+i R i ,
C f (D,I)=L( D INIT , I INIT )+TV(D)+TV(I),
C f (X)= k=1 K L k ( Y k , X k )+ T 1 ϕ 1 (X)+ T 2 ϕ 2 (X) ,
SRE= i=1 N p 10 log 10 ( d GT (i) 2 ( d GT (i)d(i)) 2 ) ,

Metrics