Abstract

The optical microscope for wavelengths above 1100 nm is a very important tool for characterizing the microstructure of a broad range of samples. The availability of the technique is, however, limited because special detectors with temperature stabilization, which are costly, must be used. We present the construction of a low-cost near-infrared microscope (800-1700 nm) based on the principles of compressed sensing. The presented setup is very simple and robust. It requires no temperature stabilization and can be used under standard laboratory conditions. We demonstrate that such a microscope, which uses a simple pair of balanced photodiodes as a detector, can acquire microscopic images of the sample that are comparable with those acquired by a standard microscope. Owing to its simplicity, the presented setup can provide access to infrared transmission microscopy and to a broad range of laboratories.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Extended-field coverage hyperspectral camera based on a single-pixel technique

Senlin Jin, Wangwei Hui, Bo Liu, Cuifeng Ying, Dongqi Liu, Qing Ye, Wenyuan Zhou, and Jianguo Tian
Appl. Opt. 55(18) 4808-4813 (2016)

Single-pixel infrared and visible microscope

Neal Radwell, Kevin J. Mitchell, Graham M. Gibson, Matthew P. Edgar, Richard Bowman, and Miles J. Padgett
Optica 1(5) 285-289 (2014)

Low-cost single-pixel 3D imaging by using an LED array

Eva Salvador-Balaguer, Pedro Latorre-Carmona, Carlos Chabert, Filiberto Pla, Jesús Lancis, and Enrique Tajahuerce
Opt. Express 26(12) 15623-15631 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2), 342–473 (2012).
    [Crossref]
  2. S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
    [Crossref] [PubMed]
  3. V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
    [Crossref] [PubMed]
  4. A. Stern, Optical Compressive Imaging (CRC, 2016).
  5. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  6. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
    [Crossref]
  7. L. McMackin, M. A. Herman, and T. Weston, “Multi-Spectral Visible-to-Shortwave Infrared Smart Camera Built on a Compressive Sensing Platform,” in Frontiers in Optics 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper FTh5C.4.
  8. H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.
  9. Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt Letter 38 (2), 4996–4999 (2013).
  10. K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
    [Crossref] [PubMed]
  11. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  12. Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM),” Opt. Express 18(24), 24565–24578 (2010).
    [Crossref] [PubMed]
  13. F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
    [Crossref] [PubMed]
  14. Photodiode overview, “2317NF.” (Newport, 2018). https://www.newport.com/p/2317NF .
  15. DLP overview, “DLPLIGHTCRAFTER DLP LightCrafter Evaluation Module” (Texas Instruments, 2018). http://www.ti.com/tool/DLPLIGHTCRAFTER .
  16. A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
    [Crossref]
  17. A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).
  18. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
    [Crossref]
  19. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
    [Crossref]
  20. R. G. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
    [Crossref]
  21. F. Krahmer, C. Kruschel, and M. Sandbichler, “Total Variation Minimization in Compressed Sensing,” in Compressed Sensing and its Applications: Second International MATHEON Conference 2015, H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, and R. Mathar, eds. (Cham: Springer International Publishing, 2017), pp. 333–358.
    [Crossref]
  22. C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Rep., 20, pp. 46–47, (2009).

2018 (1)

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

2017 (3)

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
[Crossref] [PubMed]

K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
[Crossref] [PubMed]

2016 (1)

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (1)

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt Letter 38 (2), 4996–4999 (2013).

2012 (3)

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2), 342–473 (2012).
[Crossref]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

2010 (1)

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (2)

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[Crossref]

R. G. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

2006 (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Andrés, P.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Arce, G. R.

August, Y.

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt Letter 38 (2), 4996–4999 (2013).

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Belas, E.

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Bobbert, P. A.

S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
[Crossref] [PubMed]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Bowman, R.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Candès, E.

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[Crossref]

Cao, X.

S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
[Crossref] [PubMed]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.

Clemente, P.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Denk, O.

K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
[Crossref] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

Elhadidy, H.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

Faenza, W.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Fochuk, P.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

Franc, J.

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Gibson, G. M.

Grill, R.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Hejazi, S.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Hlídek, P.

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Hlubucek, J.

K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
[Crossref] [PubMed]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Korcsmáros, G.

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Lancis, J.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Mirza, I. O.

Mitchell, K. J.

Moravec, P.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Musiienko, A.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Padgett, M. J.

Pansare, V.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Prather, D. W.

Prud’homme, R. K.

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Radwell, N.

Rogalski, A.

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2), 342–473 (2012).
[Crossref]

Romberg, J.

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[Crossref]

Salman Asif, M.

H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.

Sankaranarayanan, A. C.

H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.

Šedivý, L.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

Soldevila, F.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Stern, A.

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt Letter 38 (2), 4996–4999 (2013).

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tajahuerce, E.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tao, S. X.

S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
[Crossref] [PubMed]

Uribe-Patarroyo, N.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Vasylchenko, I.

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Veeraraghavan, A.

H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.

Wu, Y.

Ye, P.

Zázvorka, J.

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Žídek, K.

K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
[Crossref] [PubMed]

Chem. Mater. (1)

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud’homme, “Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Inverse Probl. (1)

E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007).
[Crossref]

Opt Letter (1)

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt Letter 38 (2), 4996–4999 (2013).

Opt. Express (1)

Optica (1)

Phys. Rev. Appl. (1)

A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, “Photo-Hall effect spectroscopy with enhanced illumination in p-Cd1-xMnxTe showing negative differential photoconductivity,” Phys. Rev. Appl. 10(1), 14019 (2018).

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36(2), 342–473 (2012).
[Crossref]

Sci. Rep. (3)

S. X. Tao, X. Cao, and P. A. Bobbert, “Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense,” Sci. Rep. 7(1), 14386 (2017).
[Crossref] [PubMed]

K. Žídek, O. Denk, and J. Hlubuček, “Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns,” Sci. Rep. 7(1), 15309 (2017).
[Crossref] [PubMed]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6(1), 29181 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Musiienko, R. Grill, P. Hlídek, P. Moravec, E. Belas, J. Zázvorka, G. Korcsmáros, J. Franc, and I. Vasylchenko, “Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy,” Semicond. Sci. Technol. 32(1), 15002 (2017).
[Crossref]

Other (7)

Photodiode overview, “2317NF.” (Newport, 2018). https://www.newport.com/p/2317NF .

DLP overview, “DLPLIGHTCRAFTER DLP LightCrafter Evaluation Module” (Texas Instruments, 2018). http://www.ti.com/tool/DLPLIGHTCRAFTER .

A. Stern, Optical Compressive Imaging (CRC, 2016).

L. McMackin, M. A. Herman, and T. Weston, “Multi-Spectral Visible-to-Shortwave Infrared Smart Camera Built on a Compressive Sensing Platform,” in Frontiers in Optics 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper FTh5C.4.

H. Chen, M. Salman Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: Focal plane array-based compressive imaging in short-wave infrared,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015), pp. 2358–2366.

F. Krahmer, C. Kruschel, and M. Sandbichler, “Total Variation Minimization in Compressed Sensing,” in Compressed Sensing and its Applications: Second International MATHEON Conference 2015, H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, and R. Mathar, eds. (Cham: Springer International Publishing, 2017), pp. 333–358.
[Crossref]

C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Rep., 20, pp. 46–47, (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the experimental setup. Light is propagated from the light source through the sample and then reflected by a DMD in two directions. Both light paths are measured by a balanced pair of photodiodes.
Fig. 2
Fig. 2 Principles of the SPC concept with examples of the reconstructed images. (A) Image encoding with random binary masks. (B) Measurement of intensity fluctuations (each datapoint corresponds to a single mask). (C) Reconstruction of USAF 1951 target from the measured data. Blue scale denotes 100 μm. Resolution: 76 × 76 pixels, M/N = 30%. Flat-field correction was applied to the image (see Section 6). (D) Image of the CdTe sample reconstructed for various M/N ratios with finer details emerging with the increasing measurement count. Resolution: 76 × 76 pixels. Note that the same color scheme is used in all presented reconstructions.
Fig. 3
Fig. 3 USAF 1951 target captured with the same setup via two approaches. (A-B) Measurement using SPC. (C-D) Measurement by a raster scan. (A),(C) Resolution: 76 × 76 pixels. (B),(D) Image binning for resolution:19 × 19 pixels.
Fig. 4
Fig. 4 Flat-field correction of an image of the CdTe sample (114 × 152 pixels, M/N = 0.4). (A) Uncorrected image. (B) Flat-field measurement (114 × 152 pixels, M/N = 0.4). (C) Compensated picture. (D) Image of the same sample acquired with a standard microscope with the same magnification; blue scale denotes 100 μm.
Fig. 5
Fig. 5 Reconstruction of one data set (patterns 114 × 152 pixels, M/N = 0.4) for a range of two TVAL3 parameters μ and maxcnt, demonstrating the effect of the parameters on the resulting image. Flat-field correction was not applied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y=Ax,
T(I)= i=1,j=2 n [I(i,j)I(i,j1)] 2 + i=2,j=1 n [I(i,j)I(i1,j)] 2
x=arg min x0 { μ 2 yAx 2 2 +T(I(x)) } ,

Metrics