Abstract

An electric field drives most dye-doped liquid crystal devices. Here, we demonstrate a new photo-responsive dye-doped self-organized cholesteric liquid crystal device. Upon UV or blue light exposure, the helical twisting power of the chiral azobenzene changes because of the trans-cis isomerization. As a result, the initially vertically aligned liquid crystal directors and dye molecules will change from transparent state to dark state. Such a polarizer-free photo-activated dimmer can be used for wide range of applications, such as diffractive photonic devices, portable information system, vehicular head-up displays, and as a smart window for energy-saving buildings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant

Yu-Cheng Hsiao, Kuan-Chung Huang, and Wei Lee
Opt. Express 25(3) 2687-2693 (2017)

Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals

Andrii Varanytsia and Liang-Chy Chien
Opt. Lett. 40(19) 4392-4395 (2015)

Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett. 13(3), 91–92 (1968).
    [Crossref]
  2. D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45(11), 4718–4723 (1974).
    [Crossref]
  3. A. V. Ivashchenko, Dichroic dyes for liquid crystal displays (CRC Press, 1994).
  4. D. K. Yang, “Review of operating principle and performance of polarizer‐free reflective liquid‐crystal displays,” J. Soc. Inf. Disp. 16(1), 117–124 (2008).
    [Crossref]
  5. R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
    [Crossref]
  6. A. Varanytsia and L.-C. Chien, “Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals,” Opt. Lett. 40(19), 4392–4395 (2015).
    [Crossref] [PubMed]
  7. C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
    [Crossref]
  8. S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
    [Crossref]
  9. A. Varanytsia and L.-C. Chien, “Command electro-optical switching of photoaligned liquid crystal on photopatterned graphene,” Sci. Rep. 7(1), 11778 (2017).
    [Crossref] [PubMed]
  10. Y. H. Lin, J. M. Yang, Y. R. Lin, S. C. Jeng, and C. C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
    [Crossref] [PubMed]
  11. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
  12. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concept and Physical Properties Illustrated by Experiments (CRC Press, 2005).
  13. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  14. A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
    [Crossref]
  15. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [Crossref]
  16. J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
    [Crossref] [PubMed]
  17. Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley and Sons, Hoboken, NJ, 2009).
  18. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
    [Crossref] [PubMed]
  19. Y. H. Lee, L. Wang, H. Yang, and S.-T. Wu, “Photo-induced handedness inversion with opposite-handed cholesteric liquid crystal,” Opt. Express 23(17), 22658–22666 (2015).
    [Crossref] [PubMed]
  20. S. Kundu and S.-W. Kang, “Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals,” Opt. Express 21(25), 31324–31329 (2013).
    [Crossref] [PubMed]
  21. M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
    [Crossref] [PubMed]
  22. M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
    [Crossref] [PubMed]
  23. I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
    [Crossref]
  24. B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
  25. G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
    [Crossref]
  26. U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Liquid Crystals XIII, ed. by I.-C. Khoo, Proc. SPIE, 7414, 74140L (2009).
  27. G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
    [Crossref] [PubMed]

2017 (1)

A. Varanytsia and L.-C. Chien, “Command electro-optical switching of photoaligned liquid crystal on photopatterned graphene,” Sci. Rep. 7(1), 11778 (2017).
[Crossref] [PubMed]

2016 (2)

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

2015 (3)

2014 (1)

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

2013 (1)

2010 (1)

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

2009 (1)

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

2008 (2)

D. K. Yang, “Review of operating principle and performance of polarizer‐free reflective liquid‐crystal displays,” J. Soc. Inf. Disp. 16(1), 117–124 (2008).
[Crossref]

Y. H. Lin, J. M. Yang, Y. R. Lin, S. C. Jeng, and C. C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
[Crossref] [PubMed]

2007 (1)

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

2005 (1)

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

2004 (1)

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

2001 (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

2000 (1)

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

1994 (1)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

1993 (1)

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

1982 (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

1974 (1)

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45(11), 4718–4723 (1974).
[Crossref]

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Baek, J. M.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Bin, J.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Bobrovsky, A.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Boiko, N.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Bunning, T. J.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Chen, H.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Chien, L.-C.

A. Varanytsia and L.-C. Chien, “Command electro-optical switching of photoaligned liquid crystal on photopatterned graphene,” Sci. Rep. 7(1), 11778 (2017).
[Crossref] [PubMed]

A. Varanytsia and L.-C. Chien, “Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals,” Opt. Lett. 40(19), 4392–4395 (2015).
[Crossref] [PubMed]

Chmelka, B. F.

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

Coutino, P.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Dierking, I.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Gießelmann, F.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Glasser, J.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Green, L.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Heo, J.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Jákli, A.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Jeng, S. C.

Kang, S.-W.

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Kosa, T.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Kuczynskit, W.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Kundu, S.

Kurihara, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Lagerwall, S. T.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Lee, Y. H.

Li, Q.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Liao, C. C.

Liao, G.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Lin, T. H.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Lin, Y. H.

Lin, Y. R.

Mathews, M.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Nonaka, T.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Oates, W. S.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Oh, S. W.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Pelzl, G.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Scott, B. J.

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

Shibaev, V.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Sprunt, S.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Stebler, B.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Stojadinovic, S.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Stucky, G. D.

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

Tabiryan, N. V.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Tamaoki, N.

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Tan, G.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Taylor, G. N.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45(11), 4718–4723 (1974).
[Crossref]

Urbas, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Varanytsia, A.

A. Varanytsia and L.-C. Chien, “Command electro-optical switching of photoaligned liquid crystal on photopatterned graphene,” Sci. Rep. 7(1), 11778 (2017).
[Crossref] [PubMed]

A. Varanytsia and L.-C. Chien, “Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals,” Opt. Lett. 40(19), 4392–4395 (2015).
[Crossref] [PubMed]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Wang, C. T.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Wang, L.

Weissflog, W.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Wendorff, J.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

White, D. L.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45(11), 4718–4723 (1974).
[Crossref]

White, T. J.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Wirnsberger, G.

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

Wu, S. T.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Wu, S.-T.

Wu, Y. C.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Yang, D. K.

D. K. Yang, “Review of operating principle and performance of polarizer‐free reflective liquid‐crystal displays,” J. Soc. Inf. Disp. 16(1), 117–124 (2008).
[Crossref]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yang, D.-K.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Yang, H.

Yang, J. M.

Yaniv, Z.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yoon, T. H.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Zeldovich, B. Y.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Zhu, R.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Zugenmaier, P.

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

Adv. Mater. (1)

G. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, “Fast response photochromic mesostructures,” Adv. Mater. 12(19), 1450–1454 (2000).
[Crossref]

Appl. Phys. Lett. (2)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Chem. Commun. (Camb.) (1)

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Dyes Pigments (2)

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

J. Am. Chem. Soc. (2)

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45(11), 4718–4723 (1974).
[Crossref]

J. Soc. Inf. Disp. (2)

D. K. Yang, “Review of operating principle and performance of polarizer‐free reflective liquid‐crystal displays,” J. Soc. Inf. Disp. 16(1), 117–124 (2008).
[Crossref]

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Liq. Cryst. (2)

I. Dierking, F. Gießelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1993).
[Crossref]

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

A. Varanytsia and L.-C. Chien, “Command electro-optical switching of photoaligned liquid crystal on photopatterned graphene,” Sci. Rep. 7(1), 11778 (2017).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Other (5)

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley and Sons, Hoboken, NJ, 2009).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concept and Physical Properties Illustrated by Experiments (CRC Press, 2005).

A. V. Ivashchenko, Dichroic dyes for liquid crystal displays (CRC Press, 1994).

U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Liquid Crystals XIII, ed. by I.-C. Khoo, Proc. SPIE, 7414, 74140L (2009).

Supplementary Material (1)

NameDescription
» Visualization 1       Dynamic transition of the proposed smart dimmer.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Chemical structure of PSC-01.
Fig. 2
Fig. 2 LC director and dye orientations of the proposed photo-sensitive dimmer.
Fig. 3
Fig. 3 Measured transmission spectra of our LC sample before and after UV exposure.
Fig. 4
Fig. 4 See-through image of our smart dimmer: (a) before and (b) after UV exposure. The dynamic transition is recorded in Visualization 1.
Fig. 5
Fig. 5 Measured transmission vs. exposure time (UV light).
Fig. 6
Fig. 6 Measured transmission vs. exposure time using a blue light λ≈450 nm.
Fig. 7
Fig. 7 Measured transmission vs. exposure time of reversal process using a red HeNe laser beam.
Fig. 8
Fig. 8 (a) Measured transmittance vs. dye concentration before and after UV exposure. (b) Measured contrast ratio vs. dye concentration.
Fig. 9
Fig. 9 Microscopic images of sample 1: (a) initial state, and (b) post UV exposure state.

Tables (1)

Tables Icon

Table 1 Prepared 4 samples using different dichroic dye (S428) concentration (in wt. %)

Metrics