Abstract

We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Photonic micro-structures produced by selective etching of laser-crystallized amorphous silicon

G. Martinez-Jimenez, Y. Franz, A. F. J. Runge, M. Ceschia, N. Healy, S. Z. Oo, A. Tarazona, H. M. H. Chong, A. C. Peacock, and S. Mailis
Opt. Mater. Express 9(6) 2573-2581 (2019)

Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration

David Kwong, John Covey, Amir Hosseini, Yang Zhang, Xiaochuan Xu, and Ray T. Chen
Opt. Express 20(19) 21722-21728 (2012)

Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides

Shiyang Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 17(23) 20891-20899 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
    [Crossref] [PubMed]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  4. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  5. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
    [Crossref] [PubMed]
  6. C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
    [Crossref]
  7. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
    [Crossref] [PubMed]
  8. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
    [Crossref] [PubMed]
  9. Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21, 26688–26692 (2013).
    [Crossref] [PubMed]
  10. H. Sun, K. Y. Wang, and A. C. Foster, “Pump-degenerate phase-sensitive amplification in amorphous silicon waveguides,” Opt. Lett. 42, 3590–3593 (2017).
    [Crossref] [PubMed]
  11. Y. Huang, J. Song, X. Luo, T. Y. Liow, and G. Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
    [Crossref] [PubMed]
  12. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (∼6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432 (2008).
    [Crossref] [PubMed]
  13. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, and V. Stojanović, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243–7254 (2012).
    [Crossref] [PubMed]
  14. M. Douix, C. Baudot, D. Marris-Morini, A. Valéry, D. Fowler, P. Acosta-Alba, S. Kerdilès, C. Euvrard, R. Blanc, R. Beneyton, A. Souhaité, S. Crémer, N. Vulliet, L. Vivien, and F. Boeuf, “Low-loss poly-silicon for high performance capacitive silicon modulators,” Opt. Express 26, 5983–5990 (2018).
    [Crossref] [PubMed]
  15. R. E. Schropp, “Present status of micro-and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451, 455–465 (2004).
    [Crossref]
  16. T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38, 4030–4032 (2013).
    [Crossref] [PubMed]
  17. N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
    [Crossref] [PubMed]
  18. J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
    [Crossref]
  19. N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
    [Crossref]
  20. Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
    [Crossref]
  21. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
    [Crossref]
  22. P. Walker and W. H. Tarn, “Handbook of metal etchants,” CRC press (1990).
  23. S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
    [Crossref]
  24. M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
    [Crossref]
  25. J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).
  26. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
    [Crossref]

2018 (1)

2017 (1)

2016 (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

2014 (4)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

Y. Huang, J. Song, X. Luo, T. Y. Liow, and G. Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (2)

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
[Crossref] [PubMed]

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

2010 (2)

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2008 (1)

2006 (4)

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
[Crossref]

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

2004 (2)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

R. E. Schropp, “Present status of micro-and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451, 455–465 (2004).
[Crossref]

2000 (1)

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Acosta-Alba, P.

Ahn, C. H.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Badding, J. V.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Baets, R.

Bakir, B. B.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Ballato, J.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Baril, N. F.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Baudot, C.

Beneyton, R.

Bernabe, S.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Blanc, R.

Boeuf, F.

Bulgakova, N. M.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

Cai, Y.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Chen, X.

Cheng, H. Y.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

Choi, J. S.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Chong, H. M.

Choo, B. K.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Crémer, S.

Day, T. D.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

Diao, H.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Douix, M.

Euvrard, C.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Fang, Q.

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
[Crossref]

Fedeli, J. M.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Fokine, M.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Fortunato, E.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Foster, A. C.

Fowler, D.

Franz, Y.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gibson, U. J.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Green, M. A.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Green, W. M.

Grigoropoulos, C. P.

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Hatano, M.

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Hawkins, T.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Healy, N.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Hu, J.

Hu, Z.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Huang, J.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Huang, Y.

Jaberansary, E.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
[Crossref]

Jang, J.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Jones, M.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Jung, M.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Kamei, T.

Kang, S. H.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Kerdilès, S.

Kim, E. H.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Kim, K. H.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Kopp, C.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Kramer, S.

Ku, Y. M.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Kuyken, B.

Kwong, D. L.

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Lee, M.

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Lee, Y. H. D.

Li, H.

Li, L.

Liao, X.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Lim, Y. J.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Lin, H.

Liow, T. Y.

Lipson, M.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, X.

Lo, G. Q.

Luo, X.

Ma, Z.

Mailis, S.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

Manako, S.

Marris-Morini, D.

Martins, R.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Masaud, T. M. B.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

Mehta, K.

Michaud, J. F.

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Mohammed-Brahim, T.

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Moon, S.

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Mori, M.

Omoda, E.

Orcutt, J. S.

Orobtchouk, R.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Osgood, R. M.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

Peacock, A. C.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Porte, H.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Reed, G. T.

T. M. B. Masaud, A. Tarazona, E. Jaberansary, X. Chen, G. T. Reed, G. Z. Mashanovich, and H. M. Chong, “Hot-wire polysilicon waveguides with low deposition temperature,” Opt. Lett. 38, 4030–4032 (2013).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

Roelkens, G.

Rogel, R.

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Sakakibara, Y.

Sarret, M.

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Sazio, P. J.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Schrank, F.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Schropp, R. E.

R. E. Schropp, “Present status of micro-and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451, 455–465 (2004).
[Crossref]

Sherwood-Droz, N.

Song, J.

Song, J. F.

Souhaité, A.

Sparks, J. R.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Stojanovic, V.

Sun, H.

Suzuki, K.

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

Takei, R.

Tang, S. D.

Tao, S. H.

Tarazona, A.

Tarn, W. H.

P. Walker and W. H. Tarn, “Handbook of metal etchants,” CRC press (1990).

Tekin, T.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Thompson, M. O.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Valéry, A.

Varlamov, S.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Vivien, L.

Vulliet, N.

Walker, P.

P. Walker and W. H. Tarn, “Handbook of metal etchants,” CRC press (1990).

Wang, K. Y.

Yu, M. B.

Yun, J. S.

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

Zhang, P.

Zhang, S.

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Zhou, W.

Zimmermann, L.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

Adv. Opt. Mater. (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 Laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Appl. Phys. Lett. (1)

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[Crossref]

Eur. Phys. J. PV (1)

J. S. Yun, C. H. Ahn, M. Jung, J. Huang, K. H. Kim, S. Varlamov, and M. A. Green, “Diode laser crystallization processes of Si thin-film solar cells on glass,” Eur. Phys. J. PV 5, 55204 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011).
[Crossref]

J. Appl. Phys. (1)

M. Lee, S. Moon, M. Hatano, K. Suzuki, and C. P. Grigoropoulos, “Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films,” J. Appl. Phys. 88, 4994–4999 (2000).
[Crossref]

J. Lightw. Technol. (1)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
[Crossref]

J. Non-Cryst. Solids (2)

J. F. Michaud, R. Rogel, T. Mohammed-Brahim, and M. Sarret, “CW argon laser crystallization of silicon films: structural properties,” J. Non-Cryst. Solids 352, 998–1002 (2006).
[Crossref]

Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, and R. Martins, “Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells,” J. Non-Cryst. Solids 352, 1900–1903 (2006).
[Crossref]

Nat. Mater. (1)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

Opt. Express (8)

Y. Huang, J. Song, X. Luo, T. Y. Liow, and G. Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
[Crossref] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (∼6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432 (2008).
[Crossref] [PubMed]

J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, and V. Stojanović, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243–7254 (2012).
[Crossref] [PubMed]

M. Douix, C. Baudot, D. Marris-Morini, A. Valéry, D. Fowler, P. Acosta-Alba, S. Kerdilès, C. Euvrard, R. Blanc, R. Beneyton, A. Souhaité, S. Crémer, N. Vulliet, L. Vivien, and F. Boeuf, “Low-loss poly-silicon for high performance capacitive silicon modulators,” Opt. Express 26, 5983–5990 (2018).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
[Crossref] [PubMed]

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21, 26688–26692 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Thin Solid Films (2)

S. J. Park, Y. M. Ku, K. H. Kim, E. H. Kim, B. K. Choo, J. S. Choi, S. H. Kang, Y. J. Lim, and J. Jang, “CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size,” Thin Solid Films 511, 243–247 (2006).
[Crossref]

R. E. Schropp, “Present status of micro-and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition,” Thin Solid Films 451, 455–465 (2004).
[Crossref]

Other (1)

P. Walker and W. H. Tarn, “Handbook of metal etchants,” CRC press (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the as-deposited sample before (a) and after (b) patterning of the micron-sized waveguides. The thickness of the a-Si, SiO2 and c-Si are 480 nm, 4.6 μm and 1 mm, respectively. (c) Schematic of the laser processing setup. HWP, half-wave plate.
Fig. 2
Fig. 2 SEM micrograph cross-section of a 2 μm wide waveguide before (a) and after (b) laser processing. The debris in (b) result from the polishing process.
Fig. 3
Fig. 3 (a) Raman spectra of the as-deposited a-Si material (yellow), together with a 2 μm wide low-quality poly-Si waveguide (processed at 0.07 mm/s with 34 mW - orange) and a 1.5 μm wide high-quality poly-Si waveguide (processed at 0.1 mm/s with 230 mW - blue). Inset: close up view of the high-quality poly-Si peak together with the c-Si reference. SEM micrographs of waveguides processed to have (b) small (0.07 mm/s and 34 mW), (c) medium (0.1 mm/s and 180 mW) and (d) large polycrystalline grains (0.1 mm/s and 230 mW), as revealed via Secco etching. Inset shows a close up image of the large crystals waveguide.
Fig. 4
Fig. 4 (a) Schematic of the XRD experimental setup. (b) Example of the diffraction pattern measured on the CMOS detector for a 1.5 μm wide poly-Si waveguide processed at 0.1 mm/s with 230 mW. The large bright spot corresponds to the c-Si substrate and the XRD spot corresponding to the waveguide is circled. (c) List of observed crystal orientations and their crystal grain lengths for different waveguide widths.
Fig. 5
Fig. 5 (a) Fundamental TE mode profile calculated for a 2 μm wide waveguide at a wavelength of 1550 nm (red arrows indicate the electric field). (b) Far field output mode profile measured from a 2 μm wide waveguide using an infrared camera. (c) Cutback loss measurements for i) a 1.5 μm wide waveguide processed with a laser power of 230 mW (blue) and ii) a 2 μm wide waveguide processed with 180 mW (orange). In both cases the scan speed is 0.1 mm/s.

Metrics