Abstract

Recently, intensive research on microlens array (MLA) was undertaken, which involved intertwining with the light-field imaging in order to obtain four-dimensional information. Although several fabrication approaches for MLA attempted to achieve high density and precision geometry, further progress is necessary. In this study, we present a cost-effective fabrication strategy for geometrically tunable polymer MLA with extremely low sag height (~3 μm) through improved MEMS wet etching process. Additionally, we assemble a hand-crafted light-field camera by integrating the elaborately customized MLA with a commercial digital camera. Finally, we demonstrate representative light-field imaging features including refocusing and all-in focusing image from a single exposure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microfabricated microfluidic platforms for creating microlens array

Pin-Chuan Chen, Yi-Pin Chang, Ren-Hao Zhang, Chun-Chieh Wu, and Geo-Ry Tang
Opt. Express 25(14) 16101-16115 (2017)

Compact near-eye display system using a superlens-based microlens array magnifier

Hongbae S. Park, Reynald Hoskinson, Hamid Abdollahi, and Boris Stoeber
Opt. Express 23(24) 30618-30633 (2015)

Fabrication of polymer microlens array with controllable focal length by modifying surface wettability

Qiao Xu, Bo Dai, Yu Huang, Huansi Wang, Zhuoqing Yang, Kaimin Wang, Songlin Zhuang, and Dawei Zhang
Opt. Express 26(4) 4172-4182 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
    [Crossref]
  2. S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
    [Crossref] [PubMed]
  3. Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
    [Crossref]
  4. F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
    [Crossref] [PubMed]
  5. G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
    [Crossref] [PubMed]
  6. J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
    [Crossref] [PubMed]
  7. X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
    [Crossref]
  8. S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
    [Crossref]
  9. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  10. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).
  11. S. Di, H. Lin, and R. Du, “An artificial compound eyes imaging system based on mems technology,” in Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, 13–18 (IEEE, 2009)
    [Crossref]
  12. S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
    [Crossref]
  13. Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
    [Crossref]
  14. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  15. J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
    [Crossref]
  16. C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
    [Crossref]
  17. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 31–42, (ACM, 1996).
  18. R. Ng, Digital light field photography (Stanford University, 2006).
  19. K. Fife, A. El Gamal, and H.-S. P. Wong, “A 3D multi-aperture image sensor architecture,” in Custom Integrated Circuits Conference, 2006. CICC'06. IEEE, (IEEE, 2006), 281–284.
  20. R. Hartley and A. Zisserman, Multiple view geometry in computer vision (Cambridge University, 2003).
  21. G. Xu and Z. Zhang, Epipolar geometry in stereo, motion and object recognition: a unified approach. (Springer Science & Business Media, 2013).
  22. C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
    [Crossref] [PubMed]
  23. T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe Technical Report (2006).
  24. D. Jacobs, “Image gradients,” Class Notes for CMSC 426 (2005).
  25. D. Johnson, How to do everything: digital camera (McGraw-Hill, Inc., 2008).
  26. S. Ray, Applied photographic optics (Routledge, 2002).

2018 (2)

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

2017 (1)

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

2016 (5)

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
[Crossref] [PubMed]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

2015 (2)

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

2014 (1)

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

2010 (1)

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

2009 (1)

2005 (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Aggoun, A.

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

Albero, J.

Apelt, F.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Arai, D.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Ban, Y.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

Breuer, D.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Dai, Y.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Ding, Y.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

Endo, Y.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Fiebig, S.

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

Gomez, J.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Gomez, V.

Gonda, H.

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

Gorecki, C.

Hahne, C.

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 31–42, (ACM, 1996).

Hao, X.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

Hossain, M. M.

Huang, X.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

Ichihashi, Y.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Ihrke, I.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Ito, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Kakue, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Kim, N.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Kim, S.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Kragler, F.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Kuriyagawa, T.

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

Lee, S.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Lek, D.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Levoy, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 31–42, (ACM, 1996).

Li, S.-N.

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Liu, B.

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Luo, Y.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Mignard-Debise, L.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Moore, S.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

Nieradko, L.

Nikoloski, Z.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Niu, C.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

Ottevaere, H.

Päivänranta, B.

Passilly, N.

Pesch, M.

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

Pickering, M.

G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
[Crossref] [PubMed]

Pietarinen, J.

Qi, H.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

Restrepo, J.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Ruan, L.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

Shi, J.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Shimobaba, T.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Song, I.-H.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Stitt, M.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Sun, J.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

Tan, H.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

Tan, H.-P.

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Thienpont, H.

Velisavljevic, V.

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Refocusing distance of a standard plenoptic camera,” Opt. Express 24(19), 21521–21540 (2016).
[Crossref] [PubMed]

Wakunami, K.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Wang, D.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Wang, F.-Q.

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Wang, G.

G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
[Crossref] [PubMed]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, L.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Wang, S.

Wei, H.

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Xiang, W.

G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
[Crossref] [PubMed]

Xu, C.

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

Yamamoto, K.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Yan, J.

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

You, B. H.

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Yuan, Y.

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Zhang, B.

Zhang, Z.

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

Appl. Surf. Sci. (1)

Y. Luo, L. Wang, Y. Ding, H. Wei, X. Hao, D. Wang, Y. Dai, and J. Shi, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Appl. Therm. Eng. (1)

X. Huang, H. Qi, C. Niu, L. Ruan, H. Tan, J. Sun, and C. Xu, “Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique,” Appl. Therm. Eng. 115, 1337–1347 (2017).
[Crossref]

Comput. Methods Programs Biomed. (1)

G. Wang, W. Xiang, and M. Pickering, “A cross-platform solution for light field based 3D telemedicine,” Comput. Methods Programs Biomed. 125, 103–116 (2016).
[Crossref] [PubMed]

Computer Science Technical Report CSTR (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report CSTR 2, 1–11 (2005).

IEEE Signal Process. Mag. (1)

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of Light Field Imaging: Briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, “Fabricating micro-structured surface by using single-crystalline diamond endmill,” Int. J. Adv. Manuf. Technol. 51(9-12), 957–964 (2010).
[Crossref]

Int. J. Comput. Vis. (1)

C. Hahne, A. Aggoun, V. Velisavljevic, S. Fiebig, and M. Pesch, “Baseline and triangulation geometry in a standard plenoptic camera,” Int. J. Comput. Vis. 126(1), 21–35 (2018).
[Crossref]

Microelectron. Eng. (1)

S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng. 162, 57–62 (2016).
[Crossref]

Opt. Commun. (2)

S.-N. Li, Y. Yuan, B. Liu, F.-Q. Wang, and H.-P. Tan, “Influence of microlens array manufacturing errors on light-field imaging,” Opt. Commun. 410, 40–52 (2018).
[Crossref]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Opt. Express (3)

Plant J. (1)

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Other (10)

S. Di, H. Lin, and R. Du, “An artificial compound eyes imaging system based on mems technology,” in Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on, 13–18 (IEEE, 2009)
[Crossref]

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 31–42, (ACM, 1996).

R. Ng, Digital light field photography (Stanford University, 2006).

K. Fife, A. El Gamal, and H.-S. P. Wong, “A 3D multi-aperture image sensor architecture,” in Custom Integrated Circuits Conference, 2006. CICC'06. IEEE, (IEEE, 2006), 281–284.

R. Hartley and A. Zisserman, Multiple view geometry in computer vision (Cambridge University, 2003).

G. Xu and Z. Zhang, Epipolar geometry in stereo, motion and object recognition: a unified approach. (Springer Science & Business Media, 2013).

T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe Technical Report (2006).

D. Jacobs, “Image gradients,” Class Notes for CMSC 426 (2005).

D. Johnson, How to do everything: digital camera (McGraw-Hill, Inc., 2008).

S. Ray, Applied photographic optics (Routledge, 2002).

Supplementary Material (3)

NameDescription
» Visualization 1       The refocused images of billiard balls at various distance.
» Visualization 2       The refocused images of a tape measure at various distance.
» Visualization 3       The refocused images of a tree landscape at various distance.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Description of a light field camera based on microlens array (MLA). (a) Schematic of a light-field camera based on MLA. (b) Difference in the focusing ability of MLA based on the radius of curvature (RoC). (c) Plot of an active fill factor with different F-numbers of the main lens. The F-number of the MLA is 4. This indicates that F-number matching between the main lens and MLA is imperative in terms of minimizing discarded pixels.
Fig. 2
Fig. 2 (a) Schematic illustration of the overall MLA fabrication procedure. (b) Schematic of formation of a hemispherical shape of quartz mold via the HF solution depicted in (iv) of Fig. 2a.
Fig. 3
Fig. 3 (a) Schematic illustrations of non-uniform quartz etching. (b) Scanning electron microscope (SEM) image of the non-uniformly formed quartz mold. Red points denote the center of circles. Solid and dashed lines denote half and edge of circles. (c) Schematic illustration of the wet etching procedure for the uniform mold with low sag height and high RoC.
Fig. 4
Fig. 4 (a,b) SEM images of quartz molds (a) with two different lattice patterns and (b) with different etching times. (c) Graph of RoC versus HF etching time with respect to two different Poly-Si removal times. (d) Optical image of bare PDMS (left) and fabricated PDMS MLA (right). (e) SEM image of PDMS MLA with a high RoC of 139 μm and low sag height of 3 μm.
Fig. 5
Fig. 5 Description of a hand-crafted light-field camera with conventional camera. (a) Schematic illustration of integration with a fabricated PDMS MLA and digital camera. (b) Photograph of the measurement setup to validate the applicability of the light-field camera. (c) Raw data obtained via the hand-crafted light-filed camera. (d) Processed sub-aperture image showing the multi view point property of the light-field camera. (e) Principle of the multi-view point property in the light-field camera. (f) View point difference between view point 1 and view point 2.
Fig. 6
Fig. 6 Results of light-field image processing. (a) Image of light-field refocusing processing. (b) Normalized sharpness graph of the refocused image at 30, 60, and 90 cm. (c) All-in-focused image by using the focal stacking method.
Fig. 7
Fig. 7 Test of the light field camera for practical use. Two indoor tests include billiard and tape measure object for general and zoomed-in objects. Outdoor test for a rich light intensity object Refocusing process was performed for various distances with 3 different conditions. (see Visualization 1, Visualization 2, Visualization 3).

Tables (2)

Tables Icon

Table 1 Normalized sharpness of the refocused processed image

Tables Icon

Table 2 Detailed camera measurement parameters

Metrics